Generalized extracellular molecule sensor platform for programming cellular behavior

Abstract

Strategies for expanding the sensor space of designer receptors are urgently needed to tailor cell-based therapies to respond to any type of medically relevant molecules. Here, we describe a universal approach to designing receptor scaffolds that enables antibody-specific molecular input to activate JAK/STAT, MAPK, PLCG or PI3K/Akt signaling rewired to transgene expression driven by synthetic promoters. To demonstrate its scope, we equipped the GEMS (generalized extracellular molecule sensor) platform with antibody fragments targeting a synthetic azo dye, nicotine, a peptide tag and the PSA (prostate-specific antigen) biomarker, thereby covering inputs ranging from small molecules to proteins. These four GEMS devices provided robust signaling and transgene expression with high signal-to-noise ratios in response to their specific ligands. The sensitivity of the nicotine- and PSA-specific GEMS devices matched the clinically relevant concentration ranges, and PSA-specific GEMS were able to detect pathological PSA levels in the serum of patients diagnosed with prostate cancer.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic of the GEMS platform.
Fig. 2: Receptor scaffold optimization.
Fig. 3: GEMS devices for nicotine and extracellular proteins.
Fig. 4: GEMS for clinically relevant PSA concentrations.
Fig. 5: GEMS multiplexing and GEMS function in immune cells.

References

  1. 1.

    Lim, W. A. & June, C. H. The principles of engineering immune cells to treat cancer. Cell 168, 724–740 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Brenner, M., Cho, J. H. & Wong, W. W. Synthetic biology: sensing with modular receptors. Nat. Chem. Biol. 13, 131–132 (2017).

    Article  CAS  Google Scholar 

  3. 3.

    Schukur, L., Geering, B., Charpin-El Hamri, G. & Fussenegger, M. Implantable synthetic cytokine converter cells with AND-gate logic treat experimental psoriasis. Sci. Transl. Med. 7, 318ra201 (2015).

    Article  CAS  Google Scholar 

  4. 4.

    Saxena, P., Charpin-El Hamri, G., Folcher, M., Zulewski, H. & Fussenegger, M. Synthetic gene network restoring endogenous pituitary-thyroid feedback control in experimental Graves’ disease. Proc. Natl. Acad. Sci. USA 113, 1244–1249 (2016).

    Article  CAS  Google Scholar 

  5. 5.

    Ye, H. et al. Pharmaceutically controlled designer circuit for the treatment of the metabolic syndrome. Proc. Natl. Acad. Sci. USA 110, 141–146 (2013).

    Article  CAS  Google Scholar 

  6. 6.

    Sadelain, M., Brentjens, R. & Rivière, I. The basic principles of chimeric antigen receptor design. Cancer Discov. 3, 388–398 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Morsut, L. et al. Engineering customized cell sensing and response behaviors using synthetic notch receptors. Cell 164, 780–791 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Kojima, R., Scheller, L. & Fussenegger, M. Nonimmune cells equipped with T-cell-receptor-like signaling for cancer cell ablation. Nat. Chem. Biol. 14, 42–49 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Schwarz, K. A., Daringer, N. M., Dolberg, T. B. & Leonard, J. N. Rewiring human cellular input-output using modular extracellular sensors. Nat. Chem. Biol. 13, 202–209 (2017).

    Article  CAS  Google Scholar 

  10. 10.

    Arber, C., Young, M. & Barth, P. Reprogramming cellular functions with engineered membrane proteins. Curr. Opin. Biotechnol. 47, 92–101 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Kawahara, M. & Nagamune, T. Engineering of mammalian cell membrane proteins. Curr. Opin. Chem. Eng. 1, 411–417 (2012).

    Article  Google Scholar 

  12. 12.

    Seubert, N. et al. Active and inactive orientations of the transmembrane and cytosolic domains of the erythropoietin receptor dimer. Mol. Cell 12, 1239–1250 (2003).

    Article  CAS  Google Scholar 

  13. 13.

    Pang, X. & Zhou, H. X. A common model for cytokine receptor activation: combined scissor-like rotation and self-rotation of receptor dimer induced by class I cytokine. PLoS Comput. Biol. 8, e1002427 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Banaszynski, L. A., Liu, C. W. & Wandless, T. J. Characterization of the FKBP.rapamycin.FRB ternary complex. J. Am. Chem. Soc. 127, 4715–4721 (2005).

    Article  CAS  Google Scholar 

  15. 15.

    Liu, W., Kawahara, M., Ueda, H. & Nagamune, T. Construction of a fluorescein-responsive chimeric receptor with strict ligand dependency. Biotechnol. Bioeng. 101, 975–984 (2008).

    Article  CAS  Google Scholar 

  16. 16.

    Spinelli, S., Tegoni, M., Frenken, L., van Vliet, C. & Cambillau, C. Lateral recognition of a dye hapten by a llama VHH domain. J. Mol. Biol. 311, 123–129 (2001).

    Article  CAS  Google Scholar 

  17. 17.

    Silver, J. S. & Hunter, C. A. gp130 at the nexus of inflammation, autoimmunity, and cancer. J. Leukoc. Biol. 88, 1145–1156 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Middleton, S. A. et al. Identification of a critical ligand binding determinant of the human erythropoietin receptor. Evidence for common ligand binding motifs in the cytokine receptor family. J. Biol. Chem. 271, 14045–14054 (1996).

    Article  CAS  Google Scholar 

  19. 19.

    Reichhart, E., Ingles-Prieto, A., Tichy, A. M., McKenzie, C. & Janovjak, H. A phytochrome sensory domain permits receptor activation by red light. Angew. Chem. Int. Ed. Engl. 55, 6339–6342 (2016).

    Article  CAS  Google Scholar 

  20. 20.

    Keeley, M. B., Busch, J., Singh, R. & Abel, T. TetR hybrid transcription factors report cell signaling and are inhibited by doxycycline. Biotechniques 39, 529–536 (2005).

    Article  CAS  Google Scholar 

  21. 21.

    Fussenegger, M. et al. Streptogramin-based gene regulation systems for mammalian cells. Nat. Biotechnol. 18, 1203–1208 (2000).

    Article  CAS  Google Scholar 

  22. 22.

    Abhinand, C. S., Raju, R., Soumya, S. J., Arya, P. S. & Sudhakaran, P. R. VEGF-A/VEGFR2 signaling network in endothelial cells relevant to angiogenesis. J. Cell Commun. Signal. 10, 347–354 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Tars, K. et al. Different binding modes of free and carrier-protein-coupled nicotine in a human monoclonal antibody. J. Mol. Biol. 415, 118–127 (2012).

    Article  CAS  Google Scholar 

  24. 24.

    Benowitz, N. L., Hukkanen, J. & Jacob, P. III. Nicotine chemistry, metabolism, kinetics and biomarkers. Handb. Exp. Pharmacol. 192, 29–60 (2009).

    Article  CAS  Google Scholar 

  25. 25.

    Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S. & Vale, R. D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635–646 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Attard, G. et al. Prostate cancer. Lancet 387, 70–82 (2016).

    Article  Google Scholar 

  27. 27.

    Ménez, R. et al. Crystal structure of a ternary complex between human prostate-specific antigen, its substrate acyl intermediate and an activating antibody. J. Mol. Biol. 376, 1021–1033 (2008).

    Article  CAS  Google Scholar 

  28. 28.

    Stura, E. A. et al. Crystal structure of human prostate-specific antigen in a sandwich antibody complex. J. Mol. Biol. 414, 530–544 (2011).

    Article  CAS  Google Scholar 

  29. 29.

    Polascik, T. J., Oesterling, J. E. & Partin, A. W. Prostate specific antigen: a decade of discovery–what we have learned and where we are going. J. Urol. 162, 293–306 (1999).

    Article  CAS  Google Scholar 

  30. 30.

    Cookson, M. S. et al. Variation in the definition of biochemical recurrence in patients treated for localized prostate cancer: the American Urological Association Prostate Guidelines for Localized Prostate Cancer Update Panel report and recommendations for a standard in the reporting of surgical outcomes. J. Urol. 177, 540–545 (2007).

    Article  CAS  Google Scholar 

  31. 31.

    Ornitz, D. M. & Itoh, N. The fibroblast growth factor signaling pathway. Wiley Interdiscip. Rev. Dev. Biol. 4, 215–266 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Hall, M. P. et al. Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem. Biol. 7, 1848–1857 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Pogson, M., Parola, C., Kelton, W. J., Heuberger, P. & Reddy, S. T. Immunogenomic engineering of a plug-and-(dis)play hybridoma platform. Nat. Commun. 7, 12535 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Roybal, K. T. et al. Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell 164, 770–779 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Pollizzi, K. N. & Powell, J. D. Integrating canonical and metabolic signalling programmes in the regulation of T cell responses. Nat. Rev. Immunol. 14, 435–446 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Levy, D. E. & Darnell, J. E. Jr. Stats: transcriptional control and biological impact. Nat. Rev. Mol. Cell Biol. 3, 651–662 (2002).

    Article  CAS  Google Scholar 

  37. 37.

    Derynck, R. & Zhang, Y. E. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425, 577–584 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Falke, J. J. & Kim, S. H. Structure of a conserved receptor domain that regulates kinase activity: the cytoplasmic domain of bacterial taxis receptors. Curr. Opin. Struct. Biol. 10, 462–469 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Lombana, T. N. et al. Allosteric activation mechanism of the Mycobacterium tuberculosis receptor Ser/Thr protein kinase, PknB. Structure 18, 1667–1677 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Sasajima, Y., Aburatani, T., Sakamoto, K. & Ueda, H. Detection of protein tyrosine phosphorylation by open sandwich fluoroimmunoassay. Biotechnol. Prog. 22, 968–973 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Rentsch and H. Püschel (University Hospital of Basel) for providing patient samples. We thank M. Xie and L. Schukur for generous advice and S. Reddy as well as A.C. Waindok (D-BSSE, ETH Zurich) for providing and transfecting WEN1.3 cells. This work was supported by the National Centre of Competence in Research (NCCR) Molecular Systems Engineering.

Author information

Affiliations

Authors

Contributions

L.S. and M.F. designed the project, analyzed the results and wrote the manuscript, and L.S., T.S., D.F. and D.B. designed and performed the experiments.

Corresponding author

Correspondence to Martin Fussenegger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–3, Supplementary Figures 1–6

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Scheller, L., Strittmatter, T., Fuchs, D. et al. Generalized extracellular molecule sensor platform for programming cellular behavior. Nat Chem Biol 14, 723–729 (2018). https://doi.org/10.1038/s41589-018-0046-z

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing