Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Near-gapless and haplotype-resolved apple genomes provide insights into the genetic basis of rootstock-induced dwarfing

Abstract

Dwarfing rootstocks have transformed the production of cultivated apples; however, the genetic basis of rootstock-induced dwarfing remains largely unclear. We have assembled chromosome-level, near-gapless and haplotype-resolved genomes for the popular dwarfing rootstock ‘M9’, the semi-vigorous rootstock ‘MM106’ and ‘Fuji’, one of the most commonly grown apple cultivars. The apple orthologue of auxin response factor 3 (MdARF3) is in the Dw1 region of ‘M9’, the major locus for rootstock-induced dwarfing. Comparing ‘M9’ and ‘MM106’ genomes revealed a 9,723-bp allele-specific long terminal repeat retrotransposon/gypsy insertion, DwTE, located upstream of MdARF3. DwTE is cosegregated with the dwarfing trait in two segregating populations, suggesting its prospective utility in future dwarfing rootstock breeding. In addition, our pipeline discovered mobile mRNAs that may contribute to the development of dwarfed scion architecture. Our research provides valuable genomic resources and applicable methodology, which have the potential to accelerate breeding dwarfing rootstocks for apple and other perennial woody fruit trees.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Rootstock genetic divergence and population structure.
Fig. 2: Genome phasing and ASE analysis.
Fig. 3: Genome comparison between ‘M9’ and ‘MM106’.
Fig. 4: A LTR-RT insertion with MdARF3 gene associated with dwarfing traits.
Fig. 5: Identification of mobile mRNAs.

Similar content being viewed by others

Data availability

All raw sequencing reads of PacBio HiFi, Hi-C, Illumina, Iso-Seq and RNA-seq have been deposited in the NCBI database with the BioProject PRJNA814760 (Supplementary Table 32). Genome assemblies have been deposited in the NCBI under accession JAXBLQ000000000 (Fuji haploid consensus genome), JAXBLN000000000 (M9 haploid consensus genome) and JAXBLK000000000 (MM106 haploid consensus genome) for the haploid consensus genome and JAXBLO000000000 (Fuji haplome A genome), JAXBLP000000000 (Fuji haplome B genome), JAXBLL000000000 (M9 haplome A genome), JAXBLM000000000 (M9 haplome B genome), JAXBLI000000000 (MM106 haplome A genome) and JAXBLJ000000000 (MM106 haplome B genome) for the haplotype-resolved genome. The assembly and annotation files have also been submitted to the National Genomics Data Center (https://ngdc.cncb.ac.cn/) with the BioProject number PRJCA010465. The genome assembly and annotation files are also available at Figshare (https://figshare.com/projects/Near-gapless_and_haplotype-resolved_apple_genomes_provide_insights_into_the_genetic_basis_of_rootstock-induced_dwarfing/190926). Source data are provided with this paper.

Code availability

Computational pipelines related to identification of mobile mRNAs can be accessed through GitHub (https://github.com/simoncchu/RNAGlass) and Zenodo (https://zenodo.org/records/10146626)98.

References

  1. Pingali, P. L. Green revolution: impacts, limits, and the path ahead. Proc. Natl Acad. Sci. USA 109, 12302–12308 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Boss, P. K. & Thomas, M. R. Association of dwarfism and floral induction with a grape ‘green revolution’ mutation. Nature 416, 847–850 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. McClymont, L., Goodwin, I., Whitfield, D., O’Connell, M. & Turpin, S. Effects of rootstock, tree density and training system on early growth, yield and fruit quality of blush pear. HortScience 56, 1408–1415 (2021).

    Article  Google Scholar 

  4. Habibi, F., Liu, T., Folta, K. & Sarkhosh, A. Physiological, biochemical, and molecular aspects of grafting in fruit trees. Hortic. Res. 9, uhac032 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ou, C. et al. A de novo genome assembly of the dwarfing pear rootstock Zhongai 1. Sci. Data 6, 281 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Prassinos, C. et al. Rootstock-induced dwarfing in cherries is caused by differential cessation of terminal meristem growth and is triggered by rootstock-specific gene regulation. Tree Physiol. 29, 927–936 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Hatton, R. G. Paradise apple stocks their fruit and blossom described. J. R. Hortic. Soc. 44, 89–94 (1919).

    Google Scholar 

  8. Foster, T. M., McAtee, P. A., Waite, C. N., Boldingh, H. L. & McGhie, T. K. Apple dwarfing rootstocks exhibit an imbalance in carbohydrate allocation and reduced cell growth and metabolism. Hortic. Res. 4, 17009 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang, Y. et al. Progress of apple rootstock breeding and its use. Hortic. Plant J. 5, 183–191 (2019).

    Article  Google Scholar 

  10. MM.106. Department of Primary Industries www.dpi.nsw.gov.au/agriculture/horticulture/pomes/apples/rootstock/mm106 (2023).

  11. Foster, T. M., Celton, J., Chagné, D., Tustin, D. S. & Gardiner, S. E. Two quantitative trait loci, Dw1 and Dw2, are primarily responsible for rootstock-induced dwarfing in apple. Hortic. Res. 2, 15001 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fazio, G. et al. Dw2, a new dwarfing locus in apple rootstocks and its relationship to induction of early bearing in apple scions. J. Am. Soc. Hortic. 139, 87–98 (2014).

    Article  Google Scholar 

  13. Harrison, N. et al. A new three-locus model for rootstock-induced dwarfing in apple revealed by genetic mapping of root bark percentage. J. Exp. Bot. 67, 1871–1881 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gardner, K. M. et al. Fast and cost-effective genetic mapping in apple using next-generation sequencing. G3 (Bethesda) 4, 1681–1687 (2014).

    Article  PubMed  Google Scholar 

  15. Daccord, N. et al. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat. Genet. 49, 1099–1106 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, L. et al. A high-quality apple genome assembly reveals the association of a retrotransposon and red fruit colour. Nat. Commun. 10, 1494 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  17. Zhou, Q. et al. Haplotype-resolved genome analyses of a heterozygous diploid potato. Nat. Genet. 52, 1018–1023 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sun, X. et al. Phased diploid genome assemblies and pan-genomes provide insights into the genetic history of apple domestication. Nat. Genet. 52, 1423–1432 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Khan, A. et al. A phased, chromosome-scale genome of ‘Honeycrisp’ apple (Malus domestica). GigaByte 2022, gigabyte69 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang, J., Jiang, L. & Wu, R. Plant grafting: how genetic exchange promotes vascular reconnection. New Phytol. 214, 56–65 (2017).

    Article  PubMed  Google Scholar 

  21. Christoph, J. T. et al. Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nat. Plants 1, 15025 (2015).

    Article  Google Scholar 

  22. Duan, X. et al. PbWoxT1 mRNA from pear (Pyrus betulaefolia) undergoes long-distance transport assisted by a polypyrimidine tract binding protein. New Phytol. 210, 511–524 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Liu, W. et al. Identification of long-distance transmissible mRNA between scion and rootstock in cucurbit seedling heterografts. Int. J. Mol. Sci. 21, 5253 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, Y. et al. A universal pipeline for mobile mRNA detection and insights into heterografting advantages under chilling stress. Hortic. Res. 7, 13 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang, Y. et al. Messenger RNA exchange between scions and rootstocks in grafted grapevines. BMC Plant Biol. 15, 251 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gupta, I. et al. Single-cell isoform RNA sequencing characterizes isoforms in thousands of cerebellar cells. Nat. Biotechnol. 36, 1197–1202 (2018).

    Article  CAS  Google Scholar 

  27. Zhu, C. et al. Single-molecule, full-length transcript isoform sequencing reveals disease-associated RNA isoforms in cardiomyocytes. Nat. Commun. 12, 4203 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xue, H. et al. Chromosome level high-density integrated genetic maps improve the Pyrus bretschneideri ‘DangshanSuli’ v1.0 genome. BMC Genomics 19, 833 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Linsmith, G. et al. Pseudo-chromosome-length genome assembly of a double haploid ‘Bartlett’ pear (Pyrus communis L.). GigaScience 8, 12 (2019).

    Article  Google Scholar 

  30. Verde, I. et al. The Peach v2.0 release: high-resolution linkage mapping and deep resequencing improve chromosome-scale assembly and contiguity. BMC Genomics 18, 225 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jiang, F. C. et al. The apricot (Prunus armeniaca L.) genome elucidates Rosaceae evolution and β-carotenoid synthesis. Hortic. Res. 6, 128 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Li, Y. et al. Updated annotation of the wild strawberry Fragaria vesca V4 genome. Hortic. Res. 6, 61 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shao, K. J., Li, D. K. & Zhang, Z. R. A study on the breeding of apple dwarfing rootstock SH series. Acta Agric. Boreal. Sin. 3, 86–93 (1988).

    Google Scholar 

  34. Shao, K. J., Li, D. K., Zhang, Z. R. & Gao, X. M. Study on the characters and physiological trait of SH series apple draft stocks. Acta Hortic. Sin. 18, 289–295 (1991).

    ADS  Google Scholar 

  35. Cheng, H. et al. Haplotype-resolved assembly of diploid genomes without parental data. Nat. Biotechnol. 40, 1332–1335 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Butelli, E. et al. Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell 24, 1242–1255 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sexton, T. et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148, 458–472 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dixon, J. R. et al. Chromatin domains: the unit of chromosome organization. Mol. Cell 62, 668–680 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Melo, U. S. et al. Hi-C identifies complex genomic rearrangements and TAD-shuffling in developmental diseases. Am. J. Hum. Genet. 106, 872–884 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Long, Y. et al. Disruption of topologically associating domains by structural variations in tetraploid cottons. Genomics 113, 3405–3414 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Zhai, L. et al. Molecular and physiological characterization of the effects of auxin-enriched rootstock on grafting. Hortic. Res. 8, 74 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fazio, G., Robinson, T. L. & Aldwinckle, H. S. The Geneva apple rootstock breeding program. Plant Breed. Rev. 39, 379–424 (2015).

    Google Scholar 

  44. Seleznyova, A. N., Tustin, D. S., White, M. D. & Costes, E. Analysis of the earliest-observed expression of dwarfing rootstock effects on young apple trees, using application of Markovian models. Acta Hortic. 732, 79–84 (2007).

    Article  Google Scholar 

  45. Seleznyova, A., Tustin, D. S. & Thorp, T. G. Apple dwarfing rootstocks and interstocks affect the type of growth units produced during the annual growth cycle: precocious transition to flowering affects the composition and vigour of annual shoots. Ann. Bot. 101, 679–687 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Song, C. et al. Expression analysis of key auxin synthesis, transport, and metabolism genes in different young dwarfing apple trees. Acta Physiol. Plant 38, 43 (2016).

    Article  CAS  Google Scholar 

  47. Sessions, R. A. & Zambryski, P. C. Arabidopsis gynoecium structure in the wild and in ettin mutants. Development 121, 1519–1532 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Nemhauser, J. L., Feldman, L. J. & Zambyrski, P. C. Auxin and ETTIN in Arabidopsis gynoecium morphogenesis. Development 127, 3877–3888 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Pekker, I., Alvarez, J. P. & Eshed, Y. Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity. Plant Cell 17, 2899–2910 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Izhaki, A. & Bowman, J. L. KANADI and class III HD-Zip gene families regulate embryo patterning and modulate auxin flow during embryogenesis in Arabidopsis. Plant Cell 19, 495–508 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ilegems, M. et al. Interplay of auxin, KANADI and class III HD-ZIP transcription factors in vascular tissue formation. Development 137, 975–984 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Kelley, D. R., Arreola, A., Gallagher, T. L. & Gasser, C. S. ETTIN (ARF3) physically interacts with KANADI proteins to form a functional complex essential for integument development and polarity determination in Arabidopsis. Development 139, 1105–1109 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kuhn, A. et al. Direct ETTIN-auxin interaction controls chromatin states in gynoecium development. eLife 9, e51787 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Liu, X. et al. Auxin response factor 3 integrates the functions of AGAMOUS and APETALA2 in floral meristem determinacy. Plant J. 80, 629–641 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang, K. et al. Cell- and noncell-autonomous auxin response factor 3 controls meristem proliferation and phyllotactic patterns. Plant Physiol. 190, 2335–2349 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory activities of transposable elements: from conflicts to benefits. Nat. Rev. Genet. 18, 71–86 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Dubin, M. J., Mittelsten Scheid, O. & Becker, C. Transposons: a blessing curse. Curr. Opin. Plant Biol. 42, 23–29 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Meinke, D. W. A survey of dominant mutations in Arabidopsis thaliana. Trends Plant Sci. 18, 84–91 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Li, J., Dai, X. & Zhao, Y. A role for auxin response factor 19 in auxin and ethylene signaling in Arabidopsis. Plant Physiol. 140, 899–908 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tworkoski, T. & Fazio, G. Hormone and growth interactions of scions and size-controlling rootstocks of young apple trees. Plant Growth Regul. 78, 105–119 (2016).

    Article  CAS  Google Scholar 

  61. Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Price, A. L., Jones, N. C. & Pevzner, P. A. De novo identification of repeat families in large genomes. Bioinformatics 21, i351–i358 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Bao, Z. & Eddy, S. R. Automated de novo identification of repeat sequence families in sequenced genomes. Genome Res. 12, 1269–1276 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ellinghaus, D., Kurtz, S. & Willhoeft, U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics 9, 18 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ou, S. & Jiang, N. LTR_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol. 176, 1410–1422 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Bao, W., Kojima, K. K. & Kohany, O. Repbase update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 6, 11 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zdobnov, E. M. & Apweiler, R. InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17, 847–848 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Mendes, F. K., Vanderpool, D., Fulton, B. & Hahn, M. W. CAFE 5 models variation in evolutionary rates among gene families. Bioinformatics 36, 5516–5518 (2020).

    Article  CAS  Google Scholar 

  75. Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Danecek, P. et al. Twelve years of SAMtools and BCFtools. GigaScience 10, giab008 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  79. McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Baum, B. R. PHYLIP: phylogeny inference package. Version 3.2. Joel Felsenstein. Q. Rev. Biol. 64, 539–541 (1989).

    Article  Google Scholar 

  82. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang, C., Dong, S., Xu, J., He, W. & Yang, T. PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 35, 1786–1788 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Marais, G. et al. MUMmer4: a fast and versatile genome alignment system. PLoS Comput. Biol. 14, e1005944 (2018).

    Article  Google Scholar 

  86. Goel, M., Sun, H., Jiao, W. B. & Schneeberger, K. SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biol. 20, 277 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. Fan, X. et al. Integrated multi-omics analysis uncovers roles of mdm-miR164b-MdORE1 in strigolactone-mediated inhibition of adventitious root formation in apple. Plant Cell Environ. 45, 3582–3603 (2022).

    Article  CAS  PubMed  Google Scholar 

  90. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2Ct method. Methods 25, 402–408 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35, W265–W268 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Tang, H. et al. Synteny and collinearity in plant genomes. Science 320, 486–488 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  93. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Poplin, R. et al. A universal SNP and small-indel variant caller using deep neural networks. Nat. Biotechnol. 36, 983–987 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Chu, C. simoncchu/RNAGlass: RNAGlass_v1.0.0 (v1.0.0). Zenodo https://doi.org/10.5281/zenodo.10146626 (2023).

Download references

Acknowledgements

This work was supported by the earmarked fund for the China Agricultural Research System (CARS-27 to Z.H.), 2115 Talent Development Program of China Agricultural University, the National Key Research and Development Program (2018YFD1000100 to W.L.), the National Natural Science Foundation of China (32172522 to Z.H. and 31801823 to W.L.) 111 Project (B17043) and the Growing Futures Fund from the New Zealand Institute for Plant and Food Research Limited.

Author information

Authors and Affiliations

Authors

Contributions

Z.H., W.L. and C.C. conceived and designed the project. W.L., Z.H., H.Z., H.L., Y.W. and H.S. collected and provided plant materials. W.L., C.C., H.L., H.S., C.H.D., S.W., Z.W., J.Y. and Y.X. assembled the genome and performed ASE analysis. C.C., W.L., H.L., C.H.D., H.S., Z.W. and Y.H. developed and validated the new pipeline for mobile mRNA identification. W.L., Yuqi Li and S.W. analyzed and interpreted population resequencing data. W.L., H.L., H.Z., Y.M., K.Z., B.Z., X.F., T.M.F. and E.L.-G. performed the validation and transformation experiments. Z.H., W.L., C.C., C.H.D., T.M.F., E.L.-G, H.L., H.Z., Y.W., H.S., S.W., Z.W. and Yuqi Li contributed to writing the paper. Yi Li and X.X. provided suggestions on data analysis and editing the paper. All authors read and approved the paper.

Corresponding authors

Correspondence to Chong Chu, Cecilia H. Deng, Yi Wang or Zhenhai Han.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Patrick Edger, Zhongchi Liu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–5, Methods, Figs. 1–24 and supporting data for Supplementary Fig. 21 (unprocessed gels).

Reporting Summary

Supplementary Tables

Supplementary Tables 1–32.

Source data

Source Data Fig. 4

Unprocessed gels for Fig. 4c.

Source Data Fig. 4

Statistical source data for Fig. 4g,i.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Chu, C., Li, H. et al. Near-gapless and haplotype-resolved apple genomes provide insights into the genetic basis of rootstock-induced dwarfing. Nat Genet 56, 505–516 (2024). https://doi.org/10.1038/s41588-024-01657-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-024-01657-2

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research