Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Comprehensive genetic study of the insulin resistance marker TG:HDL-C in the UK Biobank

Abstract

Insulin resistance (IR) is a well-established risk factor for metabolic disease. The ratio of triglycerides to high-density lipoprotein cholesterol (TG:HDL-C) is a surrogate marker of IR. We conducted a genome-wide association study of the TG:HDL-C ratio in 402,398 Europeans within the UK Biobank. We identified 369 independent SNPs, of which 114 had a false discovery rate-adjusted P value < 0.05 in other genome-wide studies of IR making them high-confidence IR-associated loci. Seventy-two of these 114 loci have not been previously associated with IR. These 114 loci cluster into five groups upon phenome-wide analysis and are enriched for candidate genes important in insulin signaling, adipocyte physiology and protein metabolism. We created a polygenic-risk score from the high-confidence IR-associated loci using 51,550 European individuals in the Michigan Genomics Initiative. We identified associations with diabetes, hyperglyceridemia, hypertension, nonalcoholic fatty liver disease and ischemic heart disease. Collectively, this study provides insight into the genes, pathways, tissues and subtypes critical in IR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study design: TG:HDL-C in the UK Biobank.
Fig. 2: Overlap of the 114 high-confidence IR-associated loci with insulin-related traits.
Fig. 3: Effects of 114 high-confidence IR-associated loci with IR-related traits.
Fig. 4: Tissue, cell type, and physiological system enrichment of the 114 high-confidence IR-associated loci.
Fig. 5: Gene-set enrichment of the 114 high-confidence IR-associated loci.
Fig. 6: PRS analysis in the MGI using the 114 high-confidence IR-associated loci.

Similar content being viewed by others

Data availability

GWAS results from this study are available at the GWAS Catalog (study accessions GCST90295949–GCST90295954, all intervening numbers). UKBB genomic and phenotypic data supporting this publication are available upon application (https://ukbiobank.ac.uk). MGI individual-level data are not currently available to the public due to patient privacy requirements. Otherwise, all data used to generate figures can be found in supplementary tables, source data or in the above publicly available datasets. Source data are provided with this paper.

Code availability

The code to assign the gene labels is publicly available at https://doi.org/10.5281/zenodo.10182519 (ref. 89) and https://github.com/oliveriantonino/annotation_TGHDL.

References

  1. Brown, A. E. & Walker, M. Genetics of insulin resistance and the metabolic syndrome. Curr. Cardiol. Rep. 18, 75 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Melvin, A., O’Rahilly, S. & Savage, D. B. Genetic syndromes of severe insulin resistance. Curr. Opin. Genet. Dev. 50, 60–67 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Mundi, M. S. et al. Evolution of NAFLD and its management. Nutr. Clin. Pract. 35, 72–84 (2020).

    Article  PubMed  Google Scholar 

  4. Ormazabal, V. et al. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc. Diabetol. 17, 122 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee, J. M., Okumura, M. J., Davis, M. M., Herman, W. H. & Gurney, J. G. Prevalence and determinants of insulin resistance among U.S. adolescents: a population-based study. Diabetes Care 29, 2427–2432 (2006).

    Article  PubMed  Google Scholar 

  6. Ren, X. et al. Association between triglyceride to HDL-C ratio (TG/HDL-C) and insulin resistance in Chinese patients with newly diagnosed type 2 diabetes mellitus. PLoS ONE 11, e0154345 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bonora, E. et al. Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: studies in subjects with various degrees of glucose tolerance and insulin sensitivity. Diabetes Care 23, 57–63 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Stühlinger, M. C. et al. Relationship between insulin resistance and an endogenous nitric oxide synthase inhibitor. JAMA 287, 1420–1426 (2002).

    Article  PubMed  Google Scholar 

  9. Chen, J. Meta-Analysis of Glucose and Insulin-related Traits Consortium (MAGIC) et al. The trans-ancestral genomic architecture of glycemic traits. Nat. Genet. 53, 840–860 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Walford, G. A. et al. Genome-wide association study of the modified Stumvoll insulin sensitivity index identifies BCL2 and FAM19A2 as novel insulin sensitivity loci. Diabetes 65, 3200–3211 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Prokopenko, I. et al. A central role for GRB10 in regulation of islet function in man. PLoS Genet. 10, e1004235 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Scott, R. A. et al. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat. Genet. 44, 991–1005 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Manning, A. K. et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat. Genet. 44, 659–669 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dupuis, J. et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat. Genet. 42, 105–116 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Iwani, N. A. et al. Triglyceride to HDL-C ratio is associated with insulin resistance in overweight and obese children. Sci. Rep. 7, 40055 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. McLaughlin, T. et al. Use of metabolic markers to identify overweight individuals who are insulin resistant. Ann. Intern. Med. 139, 802–809 (2003).

    Article  PubMed  Google Scholar 

  17. Pantoja-Torres, B. et al. High triglycerides to HDL-cholesterol ratio is associated with insulin resistance in normal-weight healthy adults. Diabetes Metab. Syndr. 13, 382–388 (2019).

    Article  PubMed  Google Scholar 

  18. Chiang, J. K., Lai, N. S., Chang, J. K. & Koo, M. Predicting insulin resistance using the triglyceride-to-high-density lipoprotein cholesterol ratio in Taiwanese adults. Cardiovasc. Diabetol. 10, 93 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gong, R. et al. Associations between TG/HDL ratio and insulin resistance in the US population: a cross-sectional study. Endocr. Connect. 10, 1502–1512 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhou, W. et al. Efficiently controlling for case–control imbalance and sample relatedness in large-scale genetic association studies. Nat. Genet. 50, 1335–1341 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tang, J. et al. Obesity-associated family with sequence similarity 13, member A (FAM13A) is dispensable for adipose development and insulin sensitivity. Int. J. Obes. (Lond.) 43, 1269–1280 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Fathzadeh, M. et al. FAM13A affects body fat distribution and adipocyte function. Nat. Commun. 11, 1465 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  25. Fernandes Silva, L., Vangipurapu, J., Kuulasmaa, T. & Laakso, M. An intronic variant in the GCKR gene is associated with multiple lipids. Sci. Rep. 9, 10240 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  26. Li, X., Wang, F., Xu, M., Howles, P. & Tso, P. ApoA-IV improves insulin sensitivity and glucose uptake in mouse adipocytes via PI3K-Akt signaling. Sci. Rep. 7, 41289 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  27. Nowak, M. et al. Insulin-mediated down-regulation of apolipoprotein A5 gene expression through the phosphatidylinositol 3-kinase pathway: role of upstream stimulatory factor. Mol. Cell. Biol. 25, 1537–1548 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Haas, M. E., Attie, A. D. & Biddinger, S. B. The regulation of ApoB metabolism by insulin. Trends Endocrinol. Metab. 24, 391–397 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Kim, J. Y., Tillison, K., Lee, J. H., Rearick, D. A. & Smas, C. M. The adipose tissue triglyceride lipase ATGL/PNPLA2 is downregulated by insulin and TNF-α in 3T3-L1 adipocytes and is a target for transactivation by PPARγ. Am. J. Physiol. Endocrinol. Metab. 291, E115–E127 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Knowles, J. W. et al. Identification and validation of N-acetyltransferase 2 as an insulin sensitivity gene. J. Clin. Investig. 125, 1739–1751 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Graham, S. E. et al. The power of genetic diversity in genome-wide association studies of lipids. Nature 600, 675–679 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  32. Pulit, S. L. et al. Meta-analysis of genome-wide association studies for body fat distribution in 694 649 individuals of European ancestry. Hum. Mol. Genet. 28, 166–174 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Mahajan, A. et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet. 50, 1505–1513 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen, V. L. et al. Genome-wide association study of serum liver enzymes implicates diverse metabolic and liver pathology. Nat. Commun. 12, 816 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  35. Hartiala, J. A. et al. Genome-wide analysis identifies novel susceptibility loci for myocardial infarction. Eur. Heart J. 42, 919–933 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Evangelou, E. et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat. Genet. 50, 1412–1425 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stanzick, K. J. et al. Discovery and prioritization of variants and genes for kidney function in >1.2 million individuals. Nat. Commun. 12, 4350 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen, Y. et al. Genome-wide association meta-analysis identifies 17 loci associated with nonalcoholic fatty liver disease. Nat. Genet. 55, 1640–1650 (2023).

    Article  CAS  PubMed  Google Scholar 

  39. Day, F. et al. Large-scale genome-wide meta-analysis of polycystic ovary syndrome suggests shared genetic architecture for different diagnosis criteria. PLoS Genet. 14, e1007813 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Proud, C. G. Regulation of protein synthesis by insulin. Biochem. Soc. Trans. 34, 213–216 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Guillet, C., Masgrau, A., Walrand, S. & Boirie, Y. Impaired protein metabolism: interlinks between obesity, insulin resistance and inflammation. Obes. Rev. 13, 51–57 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Yang, Q. & Civelek, M. Transcription factor KLF14 and metabolic syndrome. Front. Cardiovasc. Med. 7, 91 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Teslovich, T. M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707–713 (2010).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  44. Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 518, 187–196 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Small, K. S. et al. Regulatory variants at KLF14 influence type 2 diabetes risk via a female-specific effect on adipocyte size and body composition. Nat. Genet. 50, 572–580 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mahdessian, H. et al. TM6SF2 is a regulator of liver fat metabolism influencing triglyceride secretion and hepatic lipid droplet content. Proc. Natl Acad. Sci. USA 111, 8913–8918 (2014).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  47. Zabaneh, D. & Balding, D. J. A genome-wide association study of the metabolic syndrome in Indian Asian men. PLoS ONE 5, e11961 (2010).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  48. Zhu, Y. et al. Susceptibility loci for metabolic syndrome and metabolic components identified in Han Chinese: a multi-stage genome-wide association study. J. Cell. Mol. Med. 21, 1106–1116 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kristiansson, K. et al. Genome-wide screen for metabolic syndrome susceptibility loci reveals strong lipid gene contribution but no evidence for common genetic basis for clustering of metabolic syndrome traits. Circ. Cardiovasc. Genet. 5, 242–249 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kraja, A. T. et al. A bivariate genome-wide approach to metabolic syndrome: STAMPEED consortium. Diabetes 60, 1329–1339 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Agius, L., Chachra, S. S. & Ford, B. E. The protective role of the carbohydrate response element binding protein in the liver: the metabolite perspective. Front. Endocrinol. 11, 594041 (2020).

    Article  Google Scholar 

  52. Abdul-Wahed, A., Guilmeau, S. & Postic, C. Sweet sixteenth for ChREBP: established roles and future goals. Cell Metab. 26, 324–341 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Ortega-Prieto, P. & Postic, C. Carbohydrate sensing through the transcription factor ChREBP. Front. Genet. 10, 472 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Arden, C. et al. Elevated glucose represses liver glucokinase and induces its regulatory protein to safeguard hepatic phosphate homeostasis. Diabetes 60, 3110–3120 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lind, L. Genome-wide association study of the metabolic syndrome in UK Biobank. Metab. Syndr. Relat. Disord. 17, 505–511 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. O’Donovan, G. et al. Fat distribution in men of different waist girth, fitness level and exercise habit. Int. J. Obes. (Lond.) 33, 1356–1362 (2009).

    Article  PubMed  Google Scholar 

  57. Paley, C.A. & Johnson, M. I. Abdominal obesity and metabolic syndrome: exercise as medicine? BMC Sports Sci. Med. Rehabil. 10, 7 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Shi, T. H., Wang, B. & Natarajan, S. The influence of metabolic syndrome in predicting mortality risk among US adults: importance of metabolic syndrome even in adults with normal weight. Prev. Chronic Dis. 17, E36 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wang, K. et al. Differential roles of insulin like growth factor 1 receptor and insulin receptor during embryonic heart development. BMC Dev. Biol. 19, 5 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Holmes, D. I. & Zachary, I. The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease. Genome Biol. 6, 209 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kim, S., Ahn, C., Bong, N., Choe, S. & Lee, D. K. Biphasic effects of FGF2 on adipogenesis. PLoS ONE 10, e0120073 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Blázquez-Medela, A. M., Jumabay, M. & Boström, K. I. Beyond the bone: bone morphogenetic protein signaling in adipose tissue. Obes. Rev. 20, 648–658 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Yaghootkar, H. et al. Genetic evidence for a normal-weight ‘metabolically obese’ phenotype linking insulin resistance, hypertension, coronary artery disease, and type 2 diabetes. Diabetes 63, 4369–4377 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bond, S. T., Calkin, A. C. & Drew, B. G. Sex differences in white adipose tissue expansion: emerging molecular mechanisms. Clin. Sci. (Lond.) 135, 2691–2708 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Brown, R. J. et al. The diagnosis and management of lipodystrophy syndromes: a multi-society practice guideline. J. Clin. Endocrinol. Metab. 101, 4500–4511 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Huang, Z., Xu, A. & Cheung, B. M. Y. The potential role of fibroblast growth factor 21 in lipid metabolism and hypertension. Curr. Hypertens. Rep. 19, 28 (2017).

    Article  PubMed  Google Scholar 

  67. Iizuka, K., Takao, K. & Yabe, D. ChREBP-mediated regulation of lipid metabolism: involvement of the gut microbiota, liver, and adipose tissue. Front. Endocrinol. 11, 587189 (2020).

    Article  Google Scholar 

  68. Santoro, N. et al. Hepatic de novo lipogenesis in obese youth is modulated by a common variant in the GCKR gene. J. Clin. Endocrinol. Metab. 100, E1125–E1132 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Brouwers, M. C. G. J., Jacobs, C., Bast, A., Stehouwer, C. D. A. & Schaper, N. C. Modulation of glucokinase regulatory protein: a double-edged sword? Trends Mol. Med. 21, 583–594 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Chauhan, A., Singhal, A. & Goyal, P. TG/HDL ratio: a marker for insulin resistance and atherosclerosis in prediabetics or not? J. Fam. Med. Prim. Care 10, 3700–3705 (2021).

    Article  Google Scholar 

  71. Cordero, A. & Alegria-Ezquerra, E. TG/HDL ratio as surrogate marker for insulin resistance. E J. Cardiol. Pract. 8, (2009).

  72. Giannini, C. et al. The triglyceride-to-HDL cholesterol ratio: association with insulin resistance in obese youths of different ethnic backgrounds. Diabetes Care 34, 1869–1874 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Behiry, E. G., El Nady, N. M., AbdEl Haie, O. M., Mattar, M. K. & Magdy, A. Evaluation of TG-HDL ratio instead of HOMA ratio as insulin resistance marker in overweight and children with obesity. Endocr. Metab. Immune Disord. Drug Targets 19, 676–682 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Knight, M. G. et al. The TG/HDL-C ratio does not predict insulin resistance in overweight women of African descent: a study of South African, African American and West African women. Ethn. Dis. 21, 490–494 (2011).

    PubMed  Google Scholar 

  75. Young, K. A. et al. The triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio as a predictor of insulin resistance, β-cell function, and diabetes in Hispanics and African Americans. J. Diabetes Complications 33, 118–122 (2019).

    Article  PubMed  ADS  Google Scholar 

  76. Maguire, L. H. et al. Genome-wide association analyses identify 39 new susceptibility loci for diverticular disease. Nat. Genet. 50, 1359–1365 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dey, R., Schmidt, E. M., Abecasis, G. R. & Lee, S. A fast and accurate algorithm to test for binary phenotypes and its application to PheWAS. Am. J. Hum. Genet. 101, 37–49 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zawistowski, M. et al. The Michigan Genomics Initiative: a biobank linking genotypes and electronic clinical records in Michigan Medicine patients. Cell Genom. 3, 100257 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Taliun, D. et al. LASER server: ancestry tracing with genotypes or sequence reads. Bioinformatics 33, 2056–2058 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  82. GTEx Consortium The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

    Article  Google Scholar 

  83. Franzén, O. et al. Cardiometabolic risk loci share downstream cis- and trans-gene regulation across tissues and diseases. Science 353, 827–830 (2016).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  84. Machiela, M. J. & Chanock, S. J. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 31, 3555–3557 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  88. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Oliveri, A. Code used to annotate the TG:HDL-C loci in the paper ‘comprehensive genetic study of the insulin resistance marker TG:HDL-C in the UK Biobank.’ Zenodo. https://doi.org/10.5281/zenodo.10182519 (2023).

Download references

Acknowledgements

The authors would like to acknowledge the MGI participants, Precision Health at the University of Michigan, the University of Michigan Medical School Central Biorepository and the University of Michigan Advanced Genomics Core for providing data and specimen storage, management, processing and distribution services, as well as the Center for Statistical Genetics in the Department of Biostatistics at the School of Public Health for genotype data curation, imputation and management in support of the research reported in this publication. A.O., A.K., A.P., X.D., Y.C., K.C.C., C.R., P.P., V.L.C., B.D.H. and E.K.S. supported in part by R01 DK106621 (to E.K.S.), R01 DK107904 (to E.K.S.), R01 DK128871 (to E.K.S.), R01 DK131787 (to E.K.S.) and/or the University of Michigan Department of Internal Medicine and/or The University of Michigan MBioFAR Award. R.J.R. is supported by F30 CA275039-02. H.B. is supported by F30 CA257292. Analyses in the UKBB were conducted under approved project 18120 (to E.K.S.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

E.K.S. contributed to the concept development, study design, data analysis and interpretation, writing of the manuscript and critical revision of the manuscript. A.O. and R.R. contributed to the study design, data analysis and interpretation, statistical analysis, drafting of the manuscript and critical review of the manuscript. X.D., Y.C. and C.R. contributed to data analysis and interpretation, statistical analysis and critical review of the manuscript. A.K., K.C.C., V.L.C., P.P., A.P., H.B. and B.H. contributed to data analysis and interpretation, drafting of the manuscript and critical review of the manuscript. All authors have critically reviewed the paper and approved the final version of this paper.

Corresponding author

Correspondence to Elizabeth K. Speliotes.

Ethics declarations

Competing interests

V.L.C. received grant funding from KOWA and AstraZeneca. The Regents of the University of Michigan and E.K.S. have a pending patent on the use of systems and methods for analysis of samples associated with IR and related conditions. The rest of the authors do not have any conflicts of interest.

Peer review

Peer review information

Nature Genetics thanks Constantin Polychronakos and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note (abbreviations) and Supplementary Fig. 1.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–25.

Source data

Source Data Fig. 2

Overlap of the 114 high-confidence IR-associated loci with insulin traits, novelty, gene annotation and expression of the gene in tissues.

Source Data Fig. 3

Heatmap and clusters of the 114 high-confidence IR-associated loci, and cluster PRSs and association in the UKBB.

Source Data Fig. 4

Results of the tissue, cell and system enrichment analysis.

Source Data Fig. 5

Results of the gene-sets enrichment analysis.

Source Data Fig. 6

Results of the PheWAS PRS analysis.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveri, A., Rebernick, R.J., Kuppa, A. et al. Comprehensive genetic study of the insulin resistance marker TG:HDL-C in the UK Biobank. Nat Genet 56, 212–221 (2024). https://doi.org/10.1038/s41588-023-01625-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-023-01625-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing