Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A chromatin-regulated biphasic circuit coordinates IL-1β-mediated inflammation

Abstract

Inflammation is characterized by a biphasic cycle consisting initially of a proinflammatory phase that is subsequently resolved by anti-inflammatory processes. Interleukin-1β (IL-1β) is a master regulator of proinflammation and is encoded within the same topologically associating domain (TAD) as IL-37, which is an anti-inflammatory cytokine that opposes the function of IL-1β. Within this TAD, we identified a long noncoding RNA called AMANZI, which negatively regulates IL-1β expression and trained immunity through the induction of IL37 transcription. We found that the activation of IL37 occurs through the formation of a dynamic long-range chromatin contact that leads to the temporal delay of anti-inflammatory responses. The common variant rs16944 present in AMANZI augments this regulatory circuit, predisposing individuals to enhanced proinflammation or immunosuppression. Our work illuminates a chromatin-mediated biphasic circuit coordinating expression of IL-1β and IL-37, thereby regulating two functionally opposed states of inflammation from within a single TAD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The rs16944 SNP alters the expression of IL1B and AMANZI and affects induction of trained immunity and tolerance.
Fig. 2: AMANZI is a nuclear-resident, cis-acting lncRNA that negatively regulates IL1B transcription.
Fig. 3: IL1B and IL37 transcription is controlled by a biphasic circuit that is activated by IL-1β eRNA and regulated by AMANZI.
Fig. 4: AMANZI mediates a long-range chromatin loop with IL37 to activate its transcription.
Fig. 5: AMANZI regulates IL-1β expression in a SMAD3-dependent manner via IL-1β eRNA.
Fig. 6: The SNP rs16944 affects AMANZI stability by differentially binding to YTH proteins.
Fig. 7: AMANZI A modulates trained immunity by controlling IL37 expression.
Fig. 8: A biphasic circuit regulates IL-1β and IL-37 expression to coordinate pro- and anti-inflammatory processes from within a single TAD.

Similar content being viewed by others

Data availability

The data that support the findings of the present study are available from the corresponding author upon reasonable request. RNA-seq data are available in the Gene Expression Omnibus under accession no. GSE244833. Proteomics data are available in the PRIDE database under accession no. PXD045971.

Code availability

No code was generated in the present study.

References

  1. Garly, M.-L. et al. BCG scar and positive tuberculin reaction associated with reduced child mortality in West Africa. A non-specific beneficial effect of BCG? Vaccine 21, 2782–2790 (2003).

    Article  PubMed  Google Scholar 

  2. Kleinnijenhuis, J. et al. Bacille Calmette–Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc. Natl Acad. Sci. USA 109, 17537–17542 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Garlanda, C., Dinarello, C. A. & Mantovani, A. The interleukin-1 family: back to the future. Immunity 39, 1003–1018 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Arts, R. J. W. et al. BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity. Cell Host Microbe 23, 89–100.e5 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Dinarello, C. A. A clinical perspective of IL-1β as the gatekeeper of inflammation. Eur. J. Immunol. 41, 1203–1217 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Netea, M. G. et al. A guiding map for inflammation. Nat. Immunol. 18, 826–831 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  Google Scholar 

  8. Wu, X. et al. Association of interleukin‐1 gene variations with moderate to severe chronic periodontitis in multiple ethnicities. J. Periodontal Res. 50, 52–61 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Huang, X.-L. et al. Association of interleukin-1 family cytokines single nucleotide polymorphisms with susceptibility to systemic sclerosis: an independent case-control study and a meta-analysis. Immunol. Res. 64, 1041–1052 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Li, D., Li, J., Wang, L. & Zhang, Q. Association between IL-1β, IL-8, and IL-10 polymorphisms and risk of acute pancreatitis. Genet. Mol. Res. 14, 6635–6641 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Jimenez-Sousa, M. A. et al. IL-1β rs16944 polymorphism is related to septic shock and death. Eur. J. Clin. Invest. 47, 53–62 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Awomoyi, A. A. et al. Polymorphism in IL1B: IL1B-511 association with tuberculosis and decreased lipopolysaccharide-induced IL-1beta in IFN-gamma primed ex-vivo whole blood assay. J. Endotoxin Res. 11, 281–286 (2005).

    CAS  PubMed  Google Scholar 

  13. Fan, J. et al. Variations in IL-1R1 gene influence risk for hepatitis B virus infection of children in a Han Chinese population. Int. J. Infect. Dis. 55, 45–50 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Wojtowicz, A. et al. IL1B and DEFB1 polymorphisms increase susceptibility to invasive mold infection after solid-organ transplantation. J. Infect. Dis. 211, 1646–1657 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Nold, M. F. et al. IL-37 is a fundamental inhibitor of innate immunity. Nat. Immunol. 11, 1014–1022 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, S. et al. Extracellular forms of IL-37 inhibit innate inflammation in vitro and in vivo but require the IL-1 family decoy receptor IL-1R8. Proc. Natl Acad. Sci. USA 112, 2497–2502 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li, S. et al. Role for nuclear interleukin-37 in the suppression of innate immunity. Proc. Natl Acad. Sci. USA 116, 4456–4461 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cavalli, G. et al. The anti-inflammatory cytokine interleukin-37 is an inhibitor of trained immunity. Cell Rep. 35, 108955 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Xu, W.-D., Zhao, Y. & Liu, Y. Insights into IL-37, the role in autoimmune diseases. Autoimmun. Rev. 14, 1170–1175 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Offenbacher, S. et al. GWAS for Interleukin-1β levels in gingival crevicular fluid identifies IL37 variants in periodontal inflammation. Nat. Commun. 9, 3686 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, G. et al. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 148, 84–98 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rocha, P. P., Raviram, R., Bonneau, R. & Skok, J. A. Breaking TADs: insights into hierarchical genome organization. Epigenomics 7, 523–526 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Fanucchi, S., Shibayama, Y., Burd, S., Weinberg, M. S. & Mhlanga, M. M. Chromosomal contact permits transcription between coregulated genes. Cell 155, 606–620 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Fanucchi, S. et al. Immune genes are primed for robust transcription by proximal long noncoding RNAs located in nuclear compartments. Nat. Genet. 51, 138–150 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Kung, J. T., Colognori, D. & Lee, J. T. Long noncoding RNAs: past, present, and future. Genetics 193, 651–669 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. van Solingen, C. et al. Long noncoding RNA CHROMR regulates antiviral immunity in humans. Proc. Natl Acad. Sci. USA 119, e2210321119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wang, K. C. et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472, 120–124 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lai, F. et al. Activating RNAs associate with mediator to enhance chromatin architecture and transcription. Nature 494, 497–501 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ostuni, R. et al. Latent enhancers activated by stimulation in differentiated cells. Cell 152, 157–171 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Andersson, R. et al. An atlas of active enhancers across human cell types and tissues. Nature 507, 455–461 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shibayama, Y., Fanucchi, S. & Mhlanga, M. M. in Enhancer RNAs (ed. Ørom, U. A.) 19–32 (Springer, 2017).

  33. Kaufmann, E. et al. BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. Cell 172, 176–190.e19 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Mitroulis, I. et al. Modulation of myelopoiesis progenitors is an integral component of trained immunity. Cell 172, 147–161.e12 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Moorlag, S.J.C.F.M., Roring, R. J., Joosten, L. A. B. & Netea, M. G. The role of the interleukin-1 family in trained immunity. Immunol. Rev. 281, 28–39 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Li, Y. et al. Inter-individual variability and genetic influences on cytokine responses to bacteria and fungi. Nat. Med. 22, 952–960 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Novakovic, B. et al. β-Glucan reverses the epigenetic state of LPS-induced immunological tolerance. Cell 167, 1354–1368.e14 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dos Santos, J. C. et al. β-Glucan-induced trained immunity protects against Leishmania braziliensis infection: a crucial role for IL-32. Cell Rep. 28, 2659–2672.e6 (2019).

    Article  PubMed  Google Scholar 

  39. Heintzman, N. D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39, 311–318 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Buecker, C. & Wysocka, J. Enhancers as information integration hubs in development: lessons from genomics. Trends Genet. 28, 276–284 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Calo, E. & Wysocka, J. Modification of enhancer chromatin: what, how, and why? Mol. Cell 49, 825–837 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Lupianez, D. G., Spielmann, M. & Mundlos, S. Breaking TADs: how alterations of chromatin domains result in disease. Trends Genet. 32, 225–237 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Dekker, J. & Mirny, L. The 3D genome as moderator of chromosomal communication. Cell 164, 1110–1121 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Loda, A., Collombet, S. & Heard, E. Gene regulation in time and space during X-chromosome inactivation. Nat. Rev. Mol. Cell Biol. 23, 231–249 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Javierre, B. M. et al. Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell 167, 1369–1384.e19 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ilott, N. E. et al. Long non-coding RNAs and enhancer RNAs regulate the lipopolysaccharide-induced inflammatory response in human monocytes. Nat. Commun. 5, 3979 (2014).

    Article  CAS  Google Scholar 

  48. Saldaña-Meyer, R. et al. RNA interactions are essential for CTCF-mediated genome organization. Mol. Cell. 76, 412–422.e5 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Li, W. et al. Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498, 516–520 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shibayama, Y., Fanucchi, S., Magagula, L. & Mhlanga, M. M. lncRNA and gene looping: what’s the connection? Transcription 5, e28658 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Grimsby, S. et al. Proteomics-based identification of proteins interacting with Smad3: SREBP-2 forms a complex with Smad3 and inhibits its transcriptional activity. FEBS Lett. 577, 93–100 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Dinarello, C. A. et al. Suppression of innate inflammation and immunity by interleukin-37. Eur. J. Immunol. 46, 1067–1081 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, X. et al. N6-Methyladenosine modulates messenger RNA translation efficiency. Cell 161, 1388–1399 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Macveigh-Fierro, D., Cicerchia, A., Cadorette, A., Sharma, V. & Muller, M. The m6A reader YTHDC2 is essential for escape from KSHV SOX-induced RNA decay. Proc. Natl Acad. Sci. USA 119, e2116662119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Moretto, F., Wood, N. E., Kelly, G., Doncic, A. & van Werven, F. J. A regulatory circuit of two lncRNAs and a master regulator directs cell fate in yeast. Nat. Commun. 9, 780 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Fanucchi, S., Dominguez-Andres, J., Joosten, L. A. B., Netea, M. G. & Mhlanga, M. M. The intersection of epigenetics and metabolism in trained immunity. Immunity 54, 32–43 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Xie, S.-J. et al. Characterization of long non-coding RNAs modified by m6A RNA methylation in skeletal myogenesis. Front. Cell Dev. Biol. 9, 762669 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hotchkiss, R. S., Coopersmith, C. M., McDunn, J. E. & Ferguson, T. A. The sepsis seesaw: tilting toward immunosuppression. Nat. Med. 15, 496–497 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shalova, I. N. et al. Human monocytes undergo functional re-programming during sepsis mediated by hypoxia-inducible factor-1α. Immunity 42, 484–498 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Cheng, S.-C. et al. Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis. Nat. Immunol. 17, 406–413 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Wang, Y.-C., Weng, G.-P., Liu, J.-P., Li, L. & Cheng, Q.-H. Elevated serum IL-37 concentrations in patients with sepsis. Medicine 98, e14756 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Singer, M. et al. The Third International Consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315, 801–810 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hirschfeld, M., Ma, Y., Weis, J. H., Vogel, S. N. & Weis, J. J. Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2. J. Immunol. 165, 618–622 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. van der Sande, M. et al. seq2science (v1.1.0). Zenodo https://doi.org/10.5281/zenodo.8343776 (2023).

  65. Hagege, H. et al. Quantitative analysis of chromosome conformation capture assays (3C-qPCR). Nat. Protoc. 2, 1722–1733 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Gräwe, C., Hernandez-Quiles, M., Jansen, P. W. T. C., Brimmers, A. & Vermeulen, M. Determining DNA–protein binding affinities and specificities from crude lysates using a combined SILAC/TMT labeling strategy. J. Proteome Res. 22, 2683–2693 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Dominissini, D., Moshitch-Moshkovitz, S., Salmon-Divon, M., Amariglio, N. & Rechavi, G. Transcriptome-wide mapping of N6-methyladenosine by m6A-seq based on immunocapturing and massively parallel sequencing. Nat. Protoc. 8, 176–189 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all members of the Epigenomics & Single Cell Biophysics Group (Mhlanga laboratory) and all members of the laboratories of M.G.N., L.A.B.J. and P.S. We thank INTRIM consortium members for comments on the paper. We thank R. Weinlich for contributing reagents and participants to the present study and G. B. Olivato and F. B. Hohmann for ICU patients’ data collection. We thank all volunteers in the 200FG cohort. The Vermeulen laboratory is part of the Oncode Institute, which is partly funded by the Dutch Cancer Society.

Author information

Authors and Affiliations

Authors

Contributions

E.T.F., S.F., M.G.N. and M.M.M. designed the study. E.T.F. and S.J.C.F.M.M. performed most experiments and collected and analyzed data. S.J.C.F.M.M., L.A.G. and J.C.d.S. performed the experiments on healthy human-derived monocytes. D.P.d.C.J., L.B.M., A.S.N. and P.S. performed the experiments on whole blood from patients with sepsis and septic shock. Y.N. carried out data analysis. V.V.M., D.D.D.C. and M.v.R. conducted experiments and analyzed data. E.T.F., S.J.C.F.M.M., S.F., L.A.B.J., P.S., M.G.N. and M.M.M. discussed and edited the paper. E.T.F., S.F. and M.M.M. co-wrote the paper. M.M.M. designed experiments, analyzed data and supervised the study.

Corresponding author

Correspondence to Musa M. Mhlanga.

Ethics declarations

Competing interests

M.M.M. and S.F. are founders of Lemba Therapeutics. M.G.N. and L.A.B.J. are founders of TTxD. M.M.M., S.F., M.G.N. and L.A.B.J. are equity holders in Lemba Therapeutics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Howard Chang, Maziar Divangahi, Kathryn Moore and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–8 and Figs. 1–11.

Reporting Summary

Peer Review File

Supplementary Table 1

RNA-seq count table.

Supplementary Table 2

Proteomics table showing significant hits.

Supplementary Table 3

Reagents and materials.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fok, E.T., Moorlag, S.J.C.F.M., Negishi, Y. et al. A chromatin-regulated biphasic circuit coordinates IL-1β-mediated inflammation. Nat Genet 56, 85–99 (2024). https://doi.org/10.1038/s41588-023-01598-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-023-01598-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing