Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Somatic SLC30A1 mutations altering zinc transporter ZnT1 cause aldosterone-producing adenomas and primary aldosteronism

Abstract

Primary aldosteronism (PA) is the most common form of endocrine hypertension and is characterized by inappropriately elevated aldosterone production via a renin-independent mechanism. Driver somatic mutations for aldosterone excess have been found in approximately 90% of aldosterone-producing adenomas (APAs). Other causes of lateralized adrenal PA include aldosterone-producing nodules (APNs). Using next-generation sequencing, we identified recurrent in-frame deletions in SLC30A1 in four APAs and one APN (p.L51_A57del, n = 3; p.L49_L55del, n = 2). SLC30A1 encodes the ubiquitous zinc efflux transporter ZnT1 (zinc transporter 1). The identified SLC30A1 variants are situated close to the zinc-binding site (His43 and Asp47) in transmembrane domain II and probably cause abnormal ion transport. Cases of PA with SLC30A1 mutations showed male dominance and demonstrated increased aldosterone and 18-oxocortisol concentrations. Functional studies of the SLC30A151_57del variant in a doxycycline-inducible adrenal cell system revealed pathological Na+ influx. An aberrant Na+ current led to depolarization of the resting membrane potential and, thus, to the opening of voltage-gated calcium (Ca2+) channels. This resulted in an increase in cytosolic Ca2+ activity, which stimulated CYP11B2 mRNA expression and aldosterone production. Collectively, these data implicate zinc transporter alterations as a dominant driver of aldosterone excess in PA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SLC30A1 mutations in APAs and PA.
Fig. 2: Histopathological characteristics of APAs and APNs with somatic SLC30A1 mutations.
Fig. 3: Doxy-induced activation of SLC30A1WT and SLC30A151_57del engineered in HAC15-B2Luc cells.
Fig. 4: Effect of extracellular Na+ removal on the ion currents and the cell membrane potential after Doxy induction of SLC30A1WT and SLC30A151_57del in HAC15-B2Luc cells, and intracellular Na+ content at basal condition and on inhibition of the Na+/K+-ATPase using ouabain.
Fig. 5: Proposed model for dysregulated aldosterone secretion in adrenal ZG cells with the SLC30A151_57del mutant.

Similar content being viewed by others

Data availability

Our institutional review board approval allows for the NGS analysis of somatic variants on archival tissue and sharing of these data upon request within a scientific cooperation. The tissue-related NGS data that support the findings of the present study will, therefore, be available from the authors upon reasonable request. Cell line-related RNA-seq data are available at the Gene Expression Omnibus (accession no. GSE236437). Source data are provided with this paper.

Code availability

FastQC is available at https://www.bioinformatics.babraham.ac.uk/projects/fastqc. Read adapters trimming with the bbduk tool from bbtools is available at https://sourceforge.net/projects/bbmap. The pheatmap Pretty Heatmaps, R package v.1.0.12 is available at https://CRAN.R-project.org/package=pheatmap. EnhancedVolcano: publication-ready volcano plots with enhanced coloring and labeling, R package v.1.12.0 is available at https://github.com/kevinblighe/EnhancedVolcano.

References

  1. Young, W. F. Primary aldosteronism: renaissance of a syndrome. Clin. Endocrinol. 66, 607–618 (2007).

    CAS  Google Scholar 

  2. Rossi, G. P. et al. A prospective study of the prevalence of primary aldosteronism in 1,125 hypertensive patients. J. Am. Coll. Cardiol. 48, 2293–2300 (2006).

    CAS  PubMed  Google Scholar 

  3. Fardella, C. E. et al. Primary hyperaldosteronism in essential hypertensives: prevalence, biochemical profile, and molecular biology. J. Clin. Endocrinol. Metab. 85, 1863–1867 (2000).

    CAS  PubMed  Google Scholar 

  4. Gordon, R. D., Stowasser, M., Tunny, T. J., Klemm, S. A. & Rutherford, J. C. High incidence of primary aldosteronism in 199 patients referred with hypertension. Clin. Exp. Pharm. Physiol. 21, 315–318 (1994).

    CAS  Google Scholar 

  5. Lim, P. O., Dow, E., Brennan, G., Jung, R. T. & MacDonald, T. M. High prevalence of primary aldosteronism in the Tayside hypertension clinic population. J. Hum. Hypertens. 14, 311–315 (2000).

    CAS  PubMed  Google Scholar 

  6. Loh, K. C., Koay, E. S., Khaw, M. C., Emmanuel, S. C. & Young, W. F. Jr. Prevalence of primary aldosteronism among Asian hypertensive patients in Singapore. J. Clin. Endocrinol. Metab. 85, 2854–2859 (2000).

    CAS  PubMed  Google Scholar 

  7. Calhoun, D. A., Nishizaka, M. K., Zaman, M. A., Thakkar, R. B. & Weissmann, P. Hyperaldosteronism among black and white subjects with resistant hypertension. Hypertension 40, 892–896 (2002).

    CAS  PubMed  Google Scholar 

  8. Strauch, B., Zelinka, T., Hampf, M., Bernhardt, R. & Widimsky, J. Jr. Prevalence of primary hyperaldosteronism in moderate to severe hypertension in the Central Europe region. J. Hum. Hypertens. 17, 349–352 (2003).

    CAS  PubMed  Google Scholar 

  9. Douma, S. et al. Prevalence of primary hyperaldosteronism in resistant hypertension: a retrospective observational study. Lancet 371, 1921–1926 (2008).

    CAS  PubMed  Google Scholar 

  10. Hundemer, G. L. et al. Renin phenotypes characterize vascular disease, autonomous aldosteronism, and mineralocorticoid receptor activity. J. Clin. Endocrinol. Metab. 102, 1835–1843 (2017).

    PubMed  PubMed Central  Google Scholar 

  11. Hundemer, G. L., Curhan, G. C., Yozamp, N., Wang, M. & Vaidya, A. Incidence of atrial fibrillation and mineralocorticoid receptor activity in patients with medically and surgically treated primary aldosteronism. JAMA Cardiol. 3, 768–774 (2018).

    PubMed  PubMed Central  Google Scholar 

  12. Monticone, S. et al. Cardiovascular events and target organ damage in primary aldosteronism compared with essential hypertension: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 6, 41–50 (2018).

    CAS  PubMed  Google Scholar 

  13. Rossi, G. P. et al. Renal damage in primary aldosteronism: results of the PAPY study. Hypertension 48, 232–238 (2006).

    CAS  PubMed  Google Scholar 

  14. Sechi, L. A. et al. Long-term renal outcomes in patients with primary aldosteronism. JAMA 295, 2638–2645 (2006).

    CAS  PubMed  Google Scholar 

  15. Funder, J. W. et al. The management of primary aldosteronism: case detection, dagnosis, and treatment: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 101, 1889–1916 (2016).

    CAS  PubMed  Google Scholar 

  16. Mulatero, P. et al. Prevalence and characteristics of familial hyperaldosteronism: the PATOGEN study (Primary Aldosteronism in TOrino-GENetic forms). Hypertension 58, 797–803 (2011).

    CAS  PubMed  Google Scholar 

  17. Young, W. F. Jr. Minireview: primary aldosteronism–changing concepts in diagnosis and treatment. Endocrinology 144, 2208–2213 (2003).

    CAS  PubMed  Google Scholar 

  18. Williams, T. A. et al. International histopathology consensus for unilateral primary aldosteronism. J. Clin. Endocrinol. Metab. 106, 42–54 (2021).

    PubMed  Google Scholar 

  19. Wu, X. et al. Somatic mutations of CADM1 in aldosterone-producing adenomas and gap junction-dependent regulation of aldosterone production. Nat. Genet. 55, 1009–1021 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Choi, M. et al. K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science 331, 768–772 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Taguchi, R. et al. Expression and mutations of KCNJ5 mRNA in Japanese patients with aldosterone-producing adenomas. J. Clin. Endocrinol. Metab. 97, 1311–1319 (2012).

    CAS  PubMed  Google Scholar 

  22. Beuschlein, F. et al. Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension. Nat. Genet. 45, 440–444 (2013). 444e1-2.

    CAS  PubMed  Google Scholar 

  23. Williams, T. A. et al. Somatic ATP1A1, ATP2B3, and KCNJ5 mutations in aldosterone-producing adenomas. Hypertension 63, 188–195 (2014).

    CAS  PubMed  Google Scholar 

  24. Azizan, E. A. et al. Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension. Nat. Genet. 45, 1055–1060 (2013).

    CAS  PubMed  Google Scholar 

  25. Scholl, U. I. et al. Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism. Nat. Genet. 45, 1050–1054 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Nanba, K. et al. Somatic CACNA1H mutation as a cause of aldosterone-producing adenoma. Hypertension 75, 645–649 (2020).

    CAS  PubMed  Google Scholar 

  27. Zhou, J. et al. Somatic mutations of GNA11 and GNAQ in CTNNB1-mutant aldosterone-producing adenomas presenting in puberty, pregnancy or menopause. Nat. Genet. 53, 1360–1372 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Nanba, K. et al. Targeted molecular characterization of aldosterone-producing adenomas in white Americans. J. Clin. Endocrinol. Metab. 103, 3869–3876 (2018).

    PubMed  PubMed Central  Google Scholar 

  29. Nanba, K. et al. Genetic characteristics of aldosterone-producing adenomas in blacks. Hypertension 73, 885–892 (2019).

    CAS  PubMed  Google Scholar 

  30. Satoh, F. et al. Measurement of peripheral plasma 18-oxocortisol can discriminate unilateral adenoma from bilateral diseases in patients with primary aldosteronism. Hypertension 65, 1096–1102 (2015).

    CAS  PubMed  Google Scholar 

  31. Williams, T. A. et al. Genotype-specific steroid profiles associated with aldosterone-producing adenomas. Hypertension 67, 139–145 (2016).

    CAS  PubMed  Google Scholar 

  32. Yang, Y. et al. Classification of microadenomas in patients with primary aldosteronism by steroid profiling. J. Steroid Biochem. Mol. Biol. 189, 274–282 (2019).

    CAS  PubMed  Google Scholar 

  33. Murakami, M. et al. In situ metabolomics of aldosterone-producing adenomas. JCI Insight 4, e130356 (2019).

    PubMed  PubMed Central  Google Scholar 

  34. Hattangady, N. G. et al. Mutated KCNJ5 activates the acute and chronic regulatory steps in aldosterone production. J. Mol. Endocrinol. 57, 1–11 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Oki, K., Plonczynski, M. W., Luis Lam, M., Gomez-Sanchez, E. P. & Gomez-Sanchez, C. E. Potassium channel mutant KCNJ5 T158A expression in HAC-15 cells increases aldosterone synthesis. Endocrinology 153, 1774–1782 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kitamoto, T. et al. Comparison of cardiovascular complications in patients with and without KCNJ5 gene mutations harboring aldosterone-producing adenomas. J. Atheroscler. Thromb. 22, 191–200 (2015).

    CAS  PubMed  Google Scholar 

  37. Okamura, T. et al. Characteristics of Japanese aldosterone-producing adenomas with KCNJ5 mutations. Endocr. J. 64, 39–47 (2017).

    CAS  PubMed  Google Scholar 

  38. Tezuka, Y. et al. 18-Oxocortisol synthesis in aldosterone-producing adrenocortical adenoma and significance of KCNJ5 mutation status. Hypertension 73, 1283–1290 (2019).

    CAS  PubMed  Google Scholar 

  39. Turcu, A. F. et al. Comprehensive analysis of steroid biomarkers for guiding primary aldosteronism subtyping. Hypertension 75, 183–192 (2020).

    CAS  PubMed  Google Scholar 

  40. Segal, D. et al. A role for ZnT-1 in regulating cellular cation influx. Biochem. Biophys. Res. Commun. 323, 1145–1150 (2004).

    CAS  PubMed  Google Scholar 

  41. Levy, S. et al. Molecular basis for zinc transporter 1 action as an endogenous inhibitor of L-type calcium channels. J. Biol. Chem. 284, 32434–32443 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Palmiter, R. D. & Findley, S. D. Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. EMBO J. 14, 639–649 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bafaro, E., Liu, Y., Xu, Y. & Dempski, R. E. The emerging role of zinc transporters in cellular homeostasis and cancer. Signal Transduct. Target Ther. 2, 17029 (2017).

    PubMed  PubMed Central  Google Scholar 

  44. Andrews, G. K., Wang, H., Dey, S. K. & Palmiter, R. D. Mouse zinc transporter 1 gene provides an essential function during early embryonic development. Genesis 40, 74–81 (2004).

    CAS  PubMed  Google Scholar 

  45. Coudray, N. et al. Inward-facing conformation of the zinc transporter YiiP revealed by cryoelectron microscopy. Proc. Natl Acad. Sci. USA 110, 2140–2145 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Gupta, S. et al. Visualizing the kinetic power stroke that drives proton-coupled zinc(II) transport. Nature 512, 101–104 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lu, M. & Fu, D. Structure of the zinc transporter YiiP. Science 317, 1746–1748 (2007).

    CAS  PubMed  Google Scholar 

  48. Kambe, T., Tsuji, T., Hashimoto, A. & Itsumura, N. The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol. Rev. 95, 749–784 (2015).

    CAS  PubMed  Google Scholar 

  49. Ohana, E. et al. Identification of the Zn2+ binding site and mode of operation of a mammalian Zn2+ transporter. J. Biol. Chem. 284, 17677–17686 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Fukunaka, A. et al. Demonstration and characterization of the heterodimerization of ZnT5 and ZnT6 in the early secretory pathway. J. Biol. Chem. 284, 30798–30806 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Itsumura, N. et al. Compound heterozygous mutations in SLC30A2/ZnT2 results in low milk zinc concentrations: a novel mechanism for zinc deficiency in a breast-fed infant. PLoS ONE 8, e64045 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lasry, I. et al. In situ dimerization of multiple wild type and mutant zinc transporters in live cells using bimolecular fluorescence complementation. J. Biol. Chem. 289, 7275–7292 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Murgia, C. et al. Diabetes-linked zinc transporter ZnT8 is a homodimeric protein expressed by distinct rodent endocrine cell types in the pancreas and other glands. Nutr. Metab. Cardiovasc. Dis. 19, 431–439 (2009).

    CAS  PubMed  Google Scholar 

  54. Kawachi, M., Kobae, Y., Mimura, T. & Maeshima, M. Deletion of a histidine-rich loop of AtMTP1, a vacuolar Zn2+/H+ antiporter of Arabidopsis thaliana, stimulates the transport activity. J. Biol. Chem. 283, 8374–8383 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Suzuki, T. et al. Two different zinc transport complexes of cation diffusion facilitator proteins localized in the secretory pathway operate to activate alkaline phosphatases in vertebrate cells. J. Biol. Chem. 280, 30956–30962 (2005).

    CAS  PubMed  Google Scholar 

  56. Podar, D. et al. Metal selectivity determinants in a family of transition metal transporters. J. Biol. Chem. 287, 3185–3196 (2012).

    CAS  PubMed  Google Scholar 

  57. Shusterman, E. et al. Zinc transport and the inhibition of the L-type calcium channel are two separable functions of ZnT-1. Metallomics 9, 228–238 (2017).

    CAS  PubMed  Google Scholar 

  58. Lehvy, A. I. et al. Alterations in ZnT1 expression and function lead to impaired intracellular zinc homeostasis in cancer. Cell Death Discov. 5, 144 (2019).

    PubMed  PubMed Central  Google Scholar 

  59. Shusterman, E. et al. ZnT-1 extrudes zinc from mammalian cells functioning as a Zn2+/H+ exchanger. Metallomics 6, 1656–1663 (2014).

    CAS  PubMed  Google Scholar 

  60. Baker, J. E. et al. Targeted RNA sequencing of adrenal zones using immunohistochemistry-guided capture of formalin-fixed paraffin-embedded tissue. Mol. Cell. Endocrinol. 530, 111296 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Plaska, S. W. et al. Targeted RNAseq of formalin-fixed paraffin-embedded tissue to differentiate among benign and malignant adrenal cortical tumors. Horm. Metab. Res 52, 607–613 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Hattangady, N. G. et al. Molecular and electrophysiological analyses of ATP2B4 gene variants in bilateral adrenal hyperaldosteronism. Horm. Cancer 11, 52–62 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Bassett, M. H., White, P. C. & Rainey, W. E. A role for the NGFI-B family in adrenal zonation and adrenocortical disease. Endocr. Res. 30, 567–574 (2004).

    CAS  PubMed  Google Scholar 

  64. Tauber, P. et al. Cellular pathophysiology of an adrenal adenoma-associated mutant of the plasma membrane Ca2+-ATPase ATP2B3. Endocrinology 157, 2489–2499 (2016).

    CAS  PubMed  Google Scholar 

  65. Gurtler, F. et al. Cellular pathophysiology of mutant voltage-dependent Ca2+ channel CACNA1H in primary aldosteronism. Endocrinology 161, bqaa135 (2020).

    PubMed  Google Scholar 

  66. Stindl, J. et al. Pathogenesis of adrenal aldosterone-producing adenomas carrying mutations of the Na+/K+-ATPase. Endocrinology 156, 4582–4591 (2015).

    CAS  PubMed  Google Scholar 

  67. Beharier, O. et al. Crosstalk between L-type calcium channels and ZnT-1, a new player in rate-dependent cardiac electrical remodeling. Cell Calcium 42, 71–82 (2007).

    CAS  PubMed  Google Scholar 

  68. Beharier, O. et al. The involvement of ZnT-1, a new modulator of cardiac L-type calcium channels, in [corrected] atrial tachycardia remodeling. [corrected]. Ann. NY Acad. Sci. 1188, 87–95 (2010).

    CAS  PubMed  Google Scholar 

  69. Yamasaki, S. et al. A novel role of the L-type calcium channel alpha1D subunit as a gatekeeper for intracellular zinc signaling: zinc wave. PLoS ONE 7, e39654 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Gottesman, N. et al. ZnT1 is a neuronal Zn2+/Ca2+ exchanger. Cell Calcium 101, 102505 (2022).

    CAS  PubMed  Google Scholar 

  71. Nanba, K. et al. Molecular heterogeneity in aldosterone-producing adenomas. J. Clin. Endocrinol. Metab. 101, 999–1007 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Rege, J. et al. Identification of somatic mutations in CLCN2 in aldosterone-producing adenomas. J. Endocr. Soc. 4, bvaa123 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Nanba, K. et al. Somatic CACNA1H mutation as a cause of aldosterone-producing adenoma. Hypertension 75, 645–649. (2020).

  74. Robinson, D. R. et al. Integrative clinical genomics of metastatic cancer. Nature 548, 297–303 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Robinson, D. et al. Integrative clinical genomics of advanced prostate cancer. Cell 162, 454 (2015).

    CAS  PubMed  Google Scholar 

  76. Nishimoto, K. et al. Aldosterone-stimulating somatic gene mutations are common in normal adrenal glands. Proc. Natl Acad. Sci. USA 112, E4591–E4599 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Nanba, A. T. et al. 11-Oxygenated C19 steroids do not decline with age in women. J. Clin. Endocrinol. Metab. 104, 2615–2622 (2019).

    PubMed  PubMed Central  Google Scholar 

  78. Campeau, E. et al. A versatile viral system for expression and depletion of proteins in mammalian cells. PLoS ONE 4, e6529 (2009).

    PubMed  PubMed Central  Google Scholar 

  79. Giry-Laterriere, M., Cherpin, O., Kim, Y. S., Jensen, J. & Salmon, P. Polyswitch lentivectors: ‘all-in-one’ lentiviral vectors for drug-inducible gene expression, live selection, and recombination cloning. Hum. Gene Ther. 22, 1255–1267 (2011).

    CAS  PubMed  Google Scholar 

  80. Rege, J. et al. Age-dependent increases in adrenal cytochrome b5 and serum 5-androstenediol-3-sulfate. J. Clin. Endocrinol. Metab. 101, 4585–4593 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Pezzi, V., Mathis, J. M., Rainey, W. E. & Carr, B. R. Profiling transcript levels for steroidogenic enzymes in fetal tissues. J. Steroid Biochem. Mol. Biol. 87, 181–189 (2003).

    CAS  PubMed  Google Scholar 

  82. Bassett, M. H. et al. Expression profiles for steroidogenic enzymes in adrenocortical disease. J. Clin. Endocrinol. Metab. 90, 5446–5455 (2005).

    CAS  PubMed  Google Scholar 

  83. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).

    CAS  PubMed  Google Scholar 

  84. Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research 4, 1521 (2015).

    PubMed  Google Scholar 

  85. Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25 (2010).

    PubMed  PubMed Central  Google Scholar 

  86. Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882–883 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    PubMed  PubMed Central  Google Scholar 

  88. Kolde, R. pheatmap: Pretty Heatmaps. R package v.1.0.12 https://CRAN.R-project.org/package=pheatmap (2019).

  89. Blighe, K., Rana, S. & Lewis, M. EnhancedVolcano: publication-ready volcano plots with enhanced coloring and labeling. R package v.1.12.0 https://github.com/kevinblighe/EnhancedVolcano (2021).

  90. Gomez-Sanchez, C. E. et al. The production of monoclonal antibodies against aldosterone. Steroids 49, 581–587 (1987).

    CAS  PubMed  Google Scholar 

  91. Romero, D. G. et al. Interleukin-8 synthesis, regulation, and steroidogenic role in H295R human adrenocortical cells. Endocrinology 147, 891–898 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Vinco and F. Keyoumarsi at the University of Michigan for assistance in slide preparation. We also thank E. Klayman, M. Cieslik, F. Su, R. Wang, X. Cao and A. M. Chinnaiyan at the University of Michigan for support with WES and C.-J. Liu at the University of Michigan for technical support with the targeted NGS. We would also like to acknowledge F. Gürtler and E. Wacker at the University of Regensburg for their technical assistance with the electrophysiological studies. This work was supported by grants from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK; grant nos. R01DK106618 and R01DK043140 to W.E.R.), National Center for Advancing Translational Sciences/Michigan Institute for Clinical and Health Research (grant no. UL1TR002240 to J.R.), the National Heart, Lung, and Blood Institute (grant nos. 1R01HL130106 to T.E. and R01HL155834 to A.F.T.), the Doris Duke Charitable Foundation (grant no. 2019087 to A.F.T.), the American Heart Association (grant nos. 17SDG33660447 to K.N. and 20CDA35320016 to J.R.), the Ministry of Health, Labour, and Welfare, Japan (grant no. 20FC1020 to H.S.) and Deutsche Forschungsgemeinschaft (DFG; German Research Foundation, grant nos. WA 1275/6 to R.W., BA 4436/2-1 to S.B., CRC/TRR 205 ‘The Adrenal Gland’, and RE 752/31-1 and WI 5359/2-1 ‘Project 444776998’ to M.R. and T.A.W.). M.R. also received funding from the Else Kröner-Fresenius-Stiftung (grant nos. 2012_A103, 2015_A228 and 2019_A104 ‘Else-Kröner Hyperaldosteronismus-German Conn Registry’) and the European Research Council (grant no. 694913). The lentiviral preparation was performed at the University of Michigan Vector Core and was supported by a grant from the NIDDK to the University of Michigan Center for Gastrointestinal Research (grant no. 5P30DK034933). Confocal microscopy performed at the University of Regensburg was funded by DFG (project no. 471535567).

Author information

Authors and Affiliations

Authors

Contributions

J.R., S.B., K.N. and W.E.R. designed the experiments. J.R., S.B., K.N. and W.E.R. wrote the paper. P.V. and C.K.-S. performed and analyzed WES. A.R.B. performed IHC studies and tissue DNA/RNA extraction. A.M.U. analyzed targeted NGS and RNA-seq data from tissue samples. J.R., A.R.B. and W.E.R. performed and analyzed the results of in vitro studies on HAC15-B2Luc cells. A.M.L. analyzed RNA-seq data in the engineered HAC15-B2Luc cells. S.B., C.K., A.P. and R.W. performed electrophysiological studies, calcium measurements, IF staining and flame photometry measurements of cells. A.F.T. and J.R. performed LC/MS–MS studies and analyzed the results. A.F.T., T.E., Y.Y., F.S., H.S., T.J.G., T.A.W. and M.R. assisted with patient recruitment, medical care, specimen collection and clinical data acquisition. All authors reviewed and revised the paper draft.

Corresponding author

Correspondence to William E. Rainey.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Arie Moran and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10 and Tables 1–6.

Reporting Summary

Supplementary Data

Supplementary Data 1 and 2 | Cell line-related RNA-seq data.

Source data

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rege, J., Bandulik, S., Nanba, K. et al. Somatic SLC30A1 mutations altering zinc transporter ZnT1 cause aldosterone-producing adenomas and primary aldosteronism. Nat Genet 55, 1623–1631 (2023). https://doi.org/10.1038/s41588-023-01498-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-023-01498-5

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research