Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Integrated single-cell chromatin and transcriptomic analyses of human scalp identify gene-regulatory programs and critical cell types for hair and skin diseases

Abstract

Genome-wide association studies have identified many loci associated with hair and skin disease, but identification of causal variants requires deciphering of gene-regulatory networks in relevant cell types. We generated matched single-cell chromatin profiles and transcriptomes from scalp tissue from healthy controls and patients with alopecia areata, identifying diverse cell types of the hair follicle niche. By interrogating these datasets at multiple levels of cellular resolution, we infer 50–100% more enhancer–gene links than previous approaches and show that aggregate enhancer accessibility for highly regulated genes predicts expression. We use these gene-regulatory maps to prioritize cell types, genes and causal variants implicated in the pathobiology of androgenetic alopecia (AGA), eczema and other complex traits. AGA genome-wide association studies signals are enriched in dermal papilla regulatory regions, supporting the role of these cells as drivers of AGA pathogenesis. Finally, we train machine learning models to nominate single-nucleotide polymorphisms that affect gene expression through disruption of transcription factor binding, predicting candidate functional single-nucleotide polymorphism for AGA and eczema.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multiomic single-cell atlas of primary human scalp.
Fig. 2: Gene-regulatory dynamics and modularity in human scalp.
Fig. 3: Scalp keratinocyte diversity and regulatory control of interfollicular keratinocyte differentiation.
Fig. 4: Regulatory dynamics of human hair follicle cycling.
Fig. 5: Identification of cell types and genes associated with hair, skin and autoimmune diseases.
Fig. 6: Candidate causal variants in skin and hair disease.

Similar content being viewed by others

Data availability

Sequencing data generated in this study have been deposited in the Gene Expression Omnibus (GEO) with accession code GSE212450. The full scalp dataset can be explored interactively at http://shiny.scscalpchromatin.su.domains/shiny_scalp/ (ref. 119). Reference genome files for alignment of single-cell data can be downloaded from https://support.10xgenomics.com/single-cell-gene-expression/software/release-notes/build. Predicted superenhancer-associated genes from 86 human cell types and tissues were downloaded from Supplementary Table 2 of https://doi.org/10.1016/j.cell.2013.09.053 (ref. 35). Predicted superenhancer-associated genes from mouse hair follicle cell populations were downloaded from Supplementary Table 1 of https://doi.org/10.1038/nature14289 (ref. 36). The ABC dataset generated from 131 human tissues and cell types was downloaded from https://www.engreitzlab.org/resources/ (ref. 31). Differentially expressed genes identified between control human keratinocytes and keratinocytes containing a mutant, binding-incompetent form of TP63 were obtained from Supplementary Table 1d of https://doi.org/10.1016/j.celrep.2018.11.039 (ref. 51). The counts matrix from short hairpin RNA knockdown of KLF4 in human adult keratinocytes is available on GEO with accession no. GSE111786 (ref. 54). Formatted summary statistics for partitioning heritability using LDSC can be downloaded from https://console.cloud.google.com/storage/browser/broad-alkesgroup-public-requester-pays/sumstats_formatted. Fine-mapped SNPs for 94 UK Biobank traits can be downloaded from www.finucanelab.org/data (ref. 79). Precomputed PICS fine-mapped SNPs for a variety of traits from the GWAS catalog are available at https://pics2.ucsf.edu/Downloads/ (refs. 78,80). Source data are provided with this paper.

Code availability

Custom code for data processing, peak-to-gene analyses and GWAS analyses is available on Github (https://github.com/GreenleafLab/scScalpChromatin and https://doi.org/10.5281/zenodo.7915926). Our analyses also make use of published software tools, with description of their use and parameter settings available in Methods and in the custom code above where applicable.

References

  1. Paus, R. & Cotsarelis, G. The biology of hair follicles. N. Engl. J. Med. 341, 491–497 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Woo, W.-M. & Oro, A. E. SnapShot: hair follicle stem cells. Cell 146, 334–334 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schneider, M. R., Schmidt-Ullrich, R. & Paus, R. The hair follicle as a dynamic miniorgan. Curr. Biol. 19, R132–R142 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Hsu, Y.-C. & Fuchs, E. Building and maintaining the skin. Cold Spring Harb. Perspect. Biol. 14, a040840 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Petukhova, L. et al. Genome-wide association study in alopecia areata implicates both innate and adaptive immunity. Nature 466, 113–117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Betz, R. C. et al. Genome-wide meta-analysis in alopecia areata resolves HLA associations and reveals two new susceptibility loci. Nat. Commun. 6, 5966 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Pirastu, N. et al. GWAS for male-pattern baldness identifies 71 susceptibility loci explaining 38% of the risk. Nat. Commun. 8, 1584 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hagenaars, S. P. et al. Genetic prediction of male pattern baldness. PLoS Genet. 13, e1006594 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Paternoster, L. et al. Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis. Nat. Genet. 47, 1449–1456 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gallagher, M. D. & Chen-Plotkin, A. S. The Post-GWAS era: from association to function. Am. J. Hum. Genet. 102, 717–730 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gur, C. et al. LGR5 expressing skin fibroblasts define a major cellular hub perturbed in scleroderma. Cell 185, 1373–1388 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reynolds, G. et al. Developmental cell programs are co-opted in inflammatory skin disease. Science 371, eaba6500 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Borcherding, N. et al. A transcriptomic map of murine and human alopecia areata. JCI Insight 5, e137424 (2020).

    PubMed  PubMed Central  Google Scholar 

  14. He, H. et al. Single-cell transcriptome analysis of human skin identifies novel fibroblast subpopulation and enrichment of immune subsets in atopic dermatitis. J. Allergy Clin. Immunol. 145, 1615–1628 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Hughes, T. K. et al. Second-strand synthesis-based massively parallel scRNA-seq reveals cellular states and molecular features of human inflammatory skin pathologies. Immunity 53, 878–894 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gellatly, K. J. et al. scRNA-seq of human vitiligo reveals complex networks of subclinical immune activation and a role for CCR5 in T function. Sci. Transl. Med. 13, eabd8995 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, S. et al. Single cell transcriptomics of human epidermis identifies basal stem cell transition states. Nat. Commun. 11, 4239 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Granja, J. M. et al. ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nat. Genet. 53, 403–411 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Granja, J. M. et al. Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia. Nat. Biotechnol. 37, 1458–1465 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rendl, M., Lewis, L. & Fuchs, E. Molecular dissection of mesenchymal-epithelial interactions in the hair follicle. PLoS Biol. 3, e331 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Iizuka, T., Suzuki, T., Nakano, K. & Sueki, H. Immunolocalization of aquaporin-5 in normal human skin and hypohidrotic skin diseases. J. Dermatol. 39, 344–349 (2012).

    Article  PubMed  Google Scholar 

  22. Wang, E. C. E., Dai, Z., Ferrante, A. W., Drake, C. G. & Christiano, A. M. A subset of TREM2 dermal macrophages secretes oncostatin M to maintain hair follicle stem cell quiescence and inhibit hair growth. Cell Stem Cell 24, 654–669 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Collins, A., Littman, D. R. & Taniuchi, I. RUNX proteins in transcription factor networks that regulate T-cell lineage choice. Nat. Rev. Immunol. 9, 106–115 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Muthusamy, N., Barton, K. & Leiden, J. M. Defective activation and survival of T cells lacking the Ets-1 transcription factor. Nature 377, 639–642 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Nerlov, C. & Graf, T. PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors. Genes Dev. 12, 2403–2412 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Truong, A. B., Kretz, M., Ridky, T. W., Kimmel, R. & Khavari, P. A. p63 regulates proliferation and differentiation of developmentally mature keratinocytes. Genes Dev. 20, 3185–3197 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Levy, C., Khaled, M. & Fisher, D. E. MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol. Med. 12, 406–414 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Pratt, C. H., King, L. E. Jr, Messenger, A. G., Christiano, A. M. & Sundberg, J. P. Alopecia areata. Nat. Rev. Dis. Prim. 3, 17011 (2017).

    Article  PubMed  Google Scholar 

  29. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fulco, C. P. et al. Activity-by-contact model of enhancer-promoter regulation from thousands of CRISPR perturbations. Nat. Genet. 51, 1664–1669 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nasser, J. et al. Genome-wide enhancer maps link risk variants to disease genes. Nature 593, 238–243 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gasperini, M. et al. A genome-wide framework for mapping gene regulation via cellular genetic screens. Cell 176, 1516 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Ma, S. et al. Chromatin potential identified by shared single-cell profiling RNA chromatin. Cell 183, 1103–1116 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Trevino, A. E. et al. Chromatin and gene-regulatory dynamics of the developing human cerebral cortex at single-cell resolution. Cell 184, 5053–5069 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Adam, R. C. et al. Pioneer factors govern super-enhancer dynamics in stem cell plasticity and lineage choice. Nature 521, 366–370 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hay, D. et al. Genetic dissection of the α-globin super-enhancer in vivo. Nat. Genet. 48, 895–903 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bahr, C. et al. A Myc enhancer cluster regulates normal and leukaemic haematopoietic stem cell hierarchies. Nature 553, 515–520 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Osterwalder, M. et al. Enhancer redundancy provides phenotypic robustness in mammalian development. Nature 554, 239–243 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Choi, J. et al. Evidence for additive and synergistic action of mammalian enhancers during cell fate determination. eLife 10, e65381 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bergman, D. T. et al. Compatibility rules of human enhancer and promoter sequences. Nature 607, 176–184 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Takahashi, R. et al. Defining transcriptional signatures of human hair follicle cell states. J. Invest. Dermatol. 140, 764–773 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Kim, D. S. et al. The dynamic, combinatorial cis-regulatory lexicon of epidermal differentiation. Nat. Genet. 53, 1564–1576 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rubin, A. J. et al. Lineage-specific dynamic and pre-established enhancer-promoter contacts cooperate in terminal differentiation. Nat. Genet. 49, 1522–1528 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Segre, J. A., Bauer, C. & Fuchs, E. Klf4 is a transcription factor required for establishing the barrier function of the skin. Nat. Genet. 22, 356–360 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Lien, W.-H. et al. In vivo transcriptional governance of hair follicle stem cells by canonical Wnt regulators. Nat. Cell Biol. 16, 179–190 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jave-Suarez, L. F., Winter, H., Langbein, L., Rogers, M. A. & Schweizer, J. HOXC13 is involved in the regulation of human hair keratin gene expression. J. Biol. Chem. 277, 3718–3726 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Moll, R., Divo, M. & Langbein, L. The human keratins: biology and pathology. Histochem. Cell Biol. 129, 705–733 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fuchs, E. & Green, H. Changes in keratin gene expression during terminal differentiation of the keratinocyte. Cell 19, 1033–1042 (1980).

    Article  CAS  PubMed  Google Scholar 

  50. Lopez, R. G. et al. C/EBPalpha and beta couple interfollicular keratinocyte proliferation arrest to commitment and terminal differentiation. Nat. Cell Biol. 11, 1181–1190 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Qu, J. et al. Mutant p63 affects epidermal cell identity through rewiring the enhancer landscape. Cell Rep. 25, 3490–3503 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Carroll, D. K. et al. p63 Regulates an adhesion programme and cell survival in epithelial cells. Nat. Cell Biol. 8, 551–561 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Charest, J. L., Jennings, J. M., King, W. P., Kowalczyk, A. P. & García, A. J. Cadherin-mediated cell-cell contact regulates keratinocyte differentiation. J. Invest. Dermatol. 129, 564–572 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Fortunel, N. O. et al. KLF4 inhibition promotes the expansion of keratinocyte precursors from adult human skin and of embryonic-stem-cell-derived keratinocytes. Nat. Biomed. Eng. 3, 985–997 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Dann, E., Henderson, N. C., Teichmann, S. A., Morgan, M. D. & Marioni, J. C. Differential abundance testing on single-cell data using k-nearest neighbor graphs. Nat. Biotechnol. 40, 245–253 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Garza, L. A. et al. Bald scalp in men with androgenetic alopecia retains hair follicle stem cells but lacks CD200-rich and CD34-positive hair follicle progenitor cells. J. Clin. Invest. 121, 613–622 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Morris, R. J. et al. Capturing and profiling adult hair follicle stem cells. Nat. Biotechnol. 22, 411–417 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Horsley, V., Aliprantis, A. O., Polak, L., Glimcher, L. H. & Fuchs, E. NFATc1 balances quiescence and proliferation of skin stem cells. Cell 132, 299–310 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lien, W.-H. et al. Genome-wide maps of histone modifications unwind in vivo chromatin states of the hair follicle lineage. Cell Stem Cell 9, 219–232 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Erjavec, S. O. et al. Whole exome sequencing in alopecia areata identifies rare variants in KRT82. Nat. Commun. 13, 800 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jaks, V. et al. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat. Genet. 40, 1291–1299 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Islam, N., Leung, P. S. C., Huntley, A. C. & Gershwin, M. E. The autoimmune basis of alopecia areata: a comprehensive review. Autoimmun. Rev. 14, 81–89 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Gilhar, A., Etzioni, A. & Paus, R. Alopecia areata. N. Engl. J. Med. 366, 1515–1525 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G. & Birchmeier, W. beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105, 533–545 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Andl, T., Reddy, S. T., Gaddapara, T. & Millar, S. E. WNT signals are required for the initiation of hair follicle development. Dev. Cell 2, 643–653 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Van Mater, D., Kolligs, F. T., Dlugosz, A. A. & Fearon, E. R. Transient activation of beta -catenin signaling in cutaneous keratinocytes is sufficient to trigger the active growth phase of the hair cycle in mice. Genes Dev. 17, 1219–1224 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ito, M. et al. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 447, 316–320 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Gat, U., DasGupta, R., Degenstein, L. & Fuchs, E. De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin. Cell 95, 605–614 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. DasGupta, R. & Fuchs, E. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 126, 4557–4568 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Clevers, H. & Nusse, R. Wnt/β-catenin signaling and disease. Cell 149, 1192–1205 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Keyes, B. E. et al. Nfatc1 orchestrates aging in hair follicle stem cells. Proc. Natl Acad. Sci. USA 110, E4950–E4959 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Adam, R. C. et al. Temporal layering of signaling effectors drives chromatin remodeling during hair follicle stem cell lineage progression. Cell Stem Cell 22, 398–413 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  Google Scholar 

  74. Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat. Genet. 50, 621–629 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hodgins, M. B. et al. Androgen receptors in dermal papilla cells of scalp hair follicles in male pattern baldness. Ann. N. Y. Acad. Sci. 642, 448–451 (1991).

    Article  CAS  PubMed  Google Scholar 

  77. Midorikawa, T., Chikazawa, T., Yoshino, T., Takada, K. & Arase, S. Different gene expression profile observed in dermal papilla cells related to androgenic alopecia by DNA macroarray analysis. J. Dermatol. Sci. 36, 25–32 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Farh, K. K.-H. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518, 337–343 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Weeks, E. M. et al. Leveraging polygenic enrichments of gene features to predict genes underlying complex traits and diseases. Preprint at medRxiv https://doi.org/10.1101/2020.09.08.20190561 (2020).

  80. Taylor, K. E., Ansel, K. M., Marson, A., Criswell, L. A. & Farh, K. K.-H. PICS2: next-generation fine mapping via probabilistic identification of causal SNPs. Bioinformatics 37, 3004–3007 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sliz, E. et al. Uniting biobank resources reveals novel genetic pathways modulating susceptibility for atopic dermatitis. J. Allergy Clin. Immunol. 149, 1105–1112 (2022).

    Article  CAS  PubMed  Google Scholar 

  82. Elsaesser, H., Sauer, K. & Brooks, D. G. IL-21 is required to control chronic viral infection. Science 324, 1569–1572 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fröhlich, A. et al. IL-21R on T cells is critical for sustained functionality and control of chronic viral infection. Science 324, 1576–1580 (2009).

    Article  PubMed  Google Scholar 

  84. Ren, H. M., Lukacher, A. E., Rahman, Z. S. M. & Olsen, N. J. New developments implicating IL-21 in autoimmune disease. J. Autoimmun. 122, 102689 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Corces, M. R. et al. Single-cell epigenomic analyses implicate candidate causal variants at inherited risk loci for Alzheimer’s and Parkinson’s diseases. Nat. Genet. 52, 1158–1168 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sheng, X. et al. Mapping the genetic architecture of human traits to cell types in the kidney identifies mechanisms of disease and potential treatments. Nat. Genet. 53, 1322–1333 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Turner, A. W. et al. Single-nucleus chromatin accessibility profiling highlights regulatory mechanisms of coronary artery disease risk. Nat. Genet. 54, 804–816 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ghandi, M., Lee, D., Mohammad-Noori, M. & Beer, M. A. Enhanced regulatory sequence prediction using gapped k-mer features. PLoS Comput. Biol. 10, e1003711 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Shrikumar, A., Prakash, E. & Kundaje, A. GkmExplain: fast and accurate interpretation of nonlinear gapped k-mer SVMs. Bioinformatics 35, i173–i182 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Soderquest, K. et al. Genetic variants alter T-bet binding and gene expression in mucosal inflammatory disease. PLoS Genet. 13, e1006587 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Cheung, H. et al. Accessory protein-like is essential for IL-18-mediated signaling. J. Immunol. 174, 5351–5357 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Konishi, H. et al. IL-18 contributes to the spontaneous development of atopic dermatitis-like inflammatory skin lesion independently of IgE/stat6 under specific pathogen-free conditions. Proc. Natl Acad. Sci. USA 99, 11340–11345 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Petridis, C. et al. Genome-wide meta-analysis implicates mediators of hair follicle development and morphogenesis in risk for severe acne. Nat. Commun. 9, 5075 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Xu, M. et al. WNT10A mutation causes ectodermal dysplasia by impairing progenitor cell proliferation and KLF4-mediated differentiation. Nat. Commun. 8, 15397 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Liao, C.-P., Booker, R. C., Morrison, S. J. & Le, L. Q. Identification of hair shaft progenitors that create a niche for hair pigmentation. Genes Dev. 31, 744–756 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Evellin, S. et al. FOSL1 controls the assembly of endothelial cells into capillary tubes by direct repression of αv and β3 integrin transcription. Mol. Cell. Biol. 33, 1198–1209 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jang, S. I., Karaman-Jurukovska, N., Morasso, M. I., Steinert, P. M. & Markova, N. G. Complex interactions between epidermal POU domain and activator protein 1 transcription factors regulate the expression of the profilaggrin gene in normal human epidermal keratinocytes. J. Biol. Chem. 275, 15295–15304 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Sugihara, T. M., Kudryavtseva, E. I., Kumar, V., Horridge, J. J. & Andersen, B. The POU domain factor Skn-1a represses the keratin 14 promoter independent of DNA binding. A possible role for interactions between Skn-1a and CREB-binding protein/p300. J. Biol. Chem. 276, 33036–33044 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Bartosovic, M., Kabbe, M. & Castelo-Branco, G. Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues. Nat. Biotechnol. 39, 825–835 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chen, A. F. et al. NEAT-seq: simultaneous profiling of intra-nuclear proteins, chromatin accessibility and gene expression in single cells. Nat. Methods 19, 547–553 (2022).

    Article  CAS  PubMed  Google Scholar 

  101. Chew, E. G. Y. et al. Differential expression between human dermal papilla cells from balding and non-balding scalps reveals new candidate genes for androgenetic alopecia. J. Invest. Dermatol. 136, 1559–1567 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Kitagawa, T. et al. Keratinocyte growth inhibition through the modification of Wnt signaling by androgen in balding dermal papilla cells. J. Clin. Endocrinol. Metab. 94, 1288–1294 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yang, S. et al. Decontamination of ambient RNA in single-cell RNA-seq with DecontX. Genome Biol. 21, 57 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  105. van Dijk, D. et al. Recovering gene interactions from single-cell data using data diffusion. Cell 174, 716–729 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Tjärnberg, A. et al. Optimal tuning of weighted kNN- and diffusion-based methods for denoising single cell genomics data. PLoS Comput. Biol. 17, e1008569 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Lloyd, C. et al. The basal keratin network of stratified squamous epithelia: defining K15 function in the absence of K14. J. Cell Biol. 129, 1329–1344 (1995).

    Article  CAS  PubMed  Google Scholar 

  108. Vidal, V. P. I. et al. Sox9 is essential for outer root sheath differentiation and the formation of the hair stem cell compartment. Curr. Biol. 15, 1340–1351 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Philippeos, C. et al. Spatial and single-cell transcriptional profiling identifies functionally distinct human dermal fibroblast subpopulations. J. Invest. Dermatol. 138, 811–825 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Schwartz, L. B., Metcalfe, D. D., Miller, J. S., Earl, H. & Sullivan, T. Tryptase levels as an indicator of mast-cell activation in systemic anaphylaxis and mastocytosis. N. Engl. J. Med. 316, 1622–1626 (1987).

    Article  CAS  PubMed  Google Scholar 

  111. Ren, S., Sakai, K. & Schwartz, L. B. Regulation of human mast cell beta-tryptase: conversion of inactive monomer to active tetramer at acid pH. J. Immunol. 160, 4561–4569 (1998).

    Article  CAS  PubMed  Google Scholar 

  112. Stevens, W. W. et al. Activation of the 15-lipoxygenase pathway in aspirin-exacerbated respiratory disease. J. Allergy Clin. Immunol. 147, 600–612 (2021).

    Article  CAS  PubMed  Google Scholar 

  113. Neubert, E. et al. Chromatin swelling drives neutrophil extracellular trap release. Nat. Commun. 9, 3767 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Sollberger, G., Tilley, D. O. & Zychlinsky, A. Neutrophil extracellular traps: the biology of chromatin externalization. Dev. Cell 44, 542–553 (2018).

    Article  CAS  PubMed  Google Scholar 

  115. Corces, M. R. et al. The chromatin accessibility landscape of primary human cancers. Science 362, eaav1898 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Alexa, A., Rahnenführer, J. & Lengauer, T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22, 1600–1607 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat. Methods 14, 975–978 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19, 477 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Sharma, A., Akshay, A., Rogne, M. & Eskeland, R. ShinyArchR.UiO: user-friendly,integrative and open-source tool for visualization of single-cell ATAC-seq data using ArchR. Bioinformatics 38, 834–836 (2021).

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Stanford FACS facility and Stanford Functional Genomics Facility for technical support. Figure schematics in Figure 1a,b were created with BioRender.com. This work was supported in part by grants from the NIH (nos. 2R37-ARO54780 to A.E.O. and RM1-HG007735, UM1-HG009442, UM1-HG009436, R01- HG009909, U19-AI057266, U54HG012723, UM1HG011972, R01NS128028 and U01-HG011762 to W.J.G). W.J.G. acknowledges support as a Chan-Zuckerberg Investigator (grant nos. 2017-174468 and 2018-182817). B.O.-R. was supported in part by Stanford MSTP training grant nos. T32-GM007365 and T32-GM145402. C.W. was supported in part by a Dermatology Foundation Physician Scientist Career Development Award.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was the responsibility of B.O.-R., C.W., A.E.O. and W.J.G. Investigation of single-cell experiments was carried out by B.O.-R. and C.W. B.O.-R. performed formal analysis. Resources and sample collection were done by C.W., A.E.O., J.M.K., E.J.R. and S.Z.A. B.O.-R. and W.J.G. wrote the original draft. All authors participated in paper review and editing. A.E.O., M.M.D. and W.J.G. supervised the project. Funding acquisition was carried out by A.E.O., M.M.D. and W.J.G.

Corresponding author

Correspondence to William J. Greenleaf.

Ethics declarations

Competing interests

W.J.G. is a consultant for 10X Genomics, Guardant Health, Quantapore, Erudio Bio. and Lamar Health and cofounder of Protillion Biosciences and is named on patents describing ATAC-seq. The other authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thank Matthias Huebenthal, Kerstin Meyer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Quality control of single cell RNA and ATAC datasets.

(a) Scatter plots of the number of unique fragments by the transcription start site (TSS) enrichment for each of the scATAC-seq samples. Gray dots indicate cells that did not pass quality control filters (Methods). Colorbar indicates the density of points. (b) Violin plots of the number of unique reads (UMIs, top) and the percent of reads from mitochondrial genes (bottom) for each of the scRNA-seq samples. The inset box plot represent the median, 25th percentile and 75th percentile of the data, and whiskers represent the highest and lowest values within 1.5 times the interquartile range of the boxplot. (c) Violin plots of the TSS enrichment (top) and number of unique fragments (bottom) for each of the scATAC-seq samples. Box plot as in (B). (d) UMAP projection of full scRNA-seq dataset, colored by patient sample. (e) UMAP projection of full scATAC-seq dataset, colored by patient sample. (f) Differential scATAC-seq peaks between samples processed immediately after collection or after cryopreservation for each of the major cell groupings. Differential peaks (FDR < 0.1) are indicated by colored dots. (g) Differential scRNA-seq genes between samples processed immediately after collection or after cryopreservation for each of the major cell groupings. Differential genes (FDR < 0.1) are indicated by colored dots.

Extended Data Fig. 2 Annotation of single cell RNA and ATAC datasets.

(a) UMAP projections of full scRNA-seq dataset colored by relative expression levels of representative cell compartment marker genes. (b) UMAP projections of full scATAC-seq dataset colored by relative gene activity scores of the same marker genes shown in (A). (c) Marker peaks (Wilcoxon FDR ≤ 0.1 and Log2 fold change ≥ 0.5) for each scATAC cluster. (d) The fraction of each scRNA-seq cluster comprising each sample. The total proportions for each cluster are shown in the rightmost column. (e) The fraction of each scATAC-seq cluster comprising each sample. The total proportions for each cluster are shown in the rightmost column.

Extended Data Fig. 3 Sub-clustering of major cell groups and integration of scRNA and scATAC datasets.

(a) UMAP representations of sub-clustered major cell groups using scATAC data. Cell compartments are labeled on the left, and cells are colored according to their high-resolution cluster labels. (b) UMAP representations of sub-clustered major cell groups using scRNA data. Cell compartments are labeled on the right, and cells are colored according to their high-resolution cluster labels. (c) scRNA gene expression for selected marker genes for each high-resolution scRNA-seq cluster from each sub-clustered cell group. The color indicates the relative expression across all high-resolution clusters and the size of the dot indicates the percentage of cells in that cluster that express the gene. (d) Correspondence between scRNA and scATAC-seq cluster labels for high-resolution clusters in each of the sub-clustered datasets. Heatmaps are colored according to the Jaccard index of cluster label overlap between the scRNA and scATAC-seq datasets. (e) Correspondence between scRNA and scATAC-seq cluster labels in the full scalp dataset.

Extended Data Fig. 4 Clustering and CCA-based integration robustness to subsampling.

(A through C) Repeated dimensionality reduction and clustering of the scRNA and scATAC-seq datasets with three samples (AA4, C_SD3, and C_PB3) removed from the full dataset. (a) UMAP representations of the full subsampled dataset and sub-clustered major cell groups using scRNA data. Cell compartments are labeled on the left, and cells are colored according to their high-resolution cluster labels as shown in the x-axis in (C). (b) UMAP representations of the full dataset and sub-clustered major cell groups using scATAC data. Cell compartments are labeled on the left, and cells are colored according to their high-resolution cluster labels as shown in the y-axis in (C). (c) Correspondence between scRNA and scATAC-seq cluster labels for the low- and high-resolution clusters in each of the subsampled datasets. (D through F) Repeated dimensionality reduction and clustering of the scRNA and scATAC-seq datasets with 25% of the cells randomly removed from the full dataset. (d) Same as in (A), but for the cell-subsampled dataset. (e) Same as in (B), but for the cell-subsampled dataset. (f) Same as in (C), but for the cell-subsampled dataset.

Extended Data Fig. 5 Identification and characterization of peak-to-gene linkages.

(a) Upset plot indicating the number of peak-to-gene linkages identified in the full dataset and in each of the sub-clustered datasets. (b) The distribution of the number of linked peaks per gene (median = 4). (c) The PhastCons 100-way vertebrate conservation scores for peaks with a linked gene in each dataset compared to unlinked peaks. Two-sided Wilcoxon rank-sum test comparing each dataset to unlinked peaks, p < 2.2 ×10–16. Boxplots represent the median, 25th percentile and 75th percentile of the data, and whiskers represent the highest and lowest values within 1.5 times the interquartile range of the boxplot. (d) Bar plot showing the proportion of peak-to-gene linkages where both peak and gene were validated by a multi-tissue dataset of activity-by-contact (ABC) model enhancer-gene predictions. Categories compared included the space of all possible peak-to-gene links, the mean of 100 permutations drawn from all possible peak-to-gene links where for each permutation 146,088 peaks were selected to match the anchor distance distribution of true peak-to-gene links, and the set of true peak-to-gene links identified on each sub-clustered dataset. One-sided Fisher’s exact test enrichment comparing each subgroup of true peak-to-gene links to a distance-matched background set, p < 2.2 ×10–16. (e) Venn-diagram indicating the overlap of peak-to-gene linkages and peak-to-nearest-gene associations. (f) Comparison of the linked peak score (sum of accessibility at linked peaks) compared to the gene activity score for predicting gene expression for the 1739 HRGs. Plotted is the Pearson R2 from 246 pseudo-bulked samples per gene. Boxplots represent the median, 25th percentile and 75th percentile of the data, and whiskers represent the highest and lowest values within 1.5 times the interquartile range of the boxplot.

Extended Data Fig. 6 Marker genes and cell type–specific TF regulator activity for sub-clustered interfollicular and hair-follicle associated keratinocytes.

(a) UMAP projections of sub-clustered keratinocyte scRNA-seq dataset colored by expression levels of representative marker genes. (b) UMAP projections of sub-clustered keratinocyte scATAC-seq dataset colored by gene activity scores of the same marker genes shown in (A). (c) Heatmap showing the chromatin accessibility (left) and gene expression (right) for 28,991 keratinocyte-specific peak-to-gene linkages. Peak-to-gene linkages were clustered using k-means clustering (k = 12). Rows indicate peak accessibility and gene expression on the left and right heatmaps respectively. Each column is a pseudo-bulk sample, with the colorbar on top of each heatmap indicating the cluster identity of each pseudo-bulk sample. (d) Hypergeometric enrichment p-values of TF motifs in peaks from each of the k-means clusters from (C). (e) Plot of TF motif activity correlation to corresponding TF gene expression across sub-clustered dataset against the maximum difference in chromVAR deviation z-score between clusters. TF’s with a maximum chromVAR difference in the top quartile and a pearson correlation greater than 0.5 are colored in red. (f) Prioritization of gene targets for LHX2. The x-axis shows the Pearson correlation between the TF motif activity and integrated gene expression for all expressed genes across all keratinocytes. The y-axis shows the TF Linkage Score (for all linked peaks, sum of motif score scaled by linkage correlation). Color of points indicates the hypergeometric enrichment of the TF motif in all linked peaks for each gene. Top gene targets are indicated in the shaded area (motif correlation to gene expression >0.25, linkage score >80th percentile). GO term enrichments for the top gene targets are shown in the inset bar plot. (g) Same as in (F), but for androgen receptor (AR). (h) Same as in (F), but for POU2F3.

Source data

Extended Data Fig. 7 Supplemental analyses of sub-clustered inferior segment hair follicle keratinocytes.

(a) UMAP projection of sub-clustered keratinocytes showing cells originating from alopecia areata. Cells originating from control samples are colored gray and sorted to the back of the plot. (b) UMAP projection of sub-clustered scRNA inferior segment hair follicle keratinocytes. (c) UMAP projection of sub-clustered scATAC inferior segment hair follicle keratinocytes colored by matched nearest scRNA cluster. (d) Correspondence between scRNA and scATAC-seq cluster labels for integrated inferior segment hair follicle keratinocytes. (e) Paired heatmaps of positive TF regulators whose TF motif activity (left) and matched gene expression (right) are positively correlated across the hair follicle keratinocyte differentiation pseudotime trajectory. (f) GO term enrichments of the most variable 10% of genes across the hair follicle keratinocyte differentiation pseudotime trajectory.

Extended Data Fig. 8 Supplemental analyses of GWAS signal enrichment in cell type–specific open chromatin regions and cell type–specific genes.

(a) Cluster-specificity of peaks used for LD score regression and for Fisher enrichment tests in Fig. 5. More than 50% of peaks are specific to <1/8 of high-resolution scATAC clusters, and 85% of peaks are specific to ≤ 1/4 of clusters. (b) Distribution of the number of clusters in which each peak is accessible. Peaks accessible in ≤ 1/4 of clusters (9 high-resolution clusters) were used for cluster-specific enrichment analyses. (c) Cluster-specificity of marker genes used for LD score regression and for Fisher enrichment tests in (E) and (G) respectively. (d) Distribution of the number of clusters identified as expressing a given marker gene. Marker genes expressed in ≤ 1/4 of clusters (10 high-resolution clusters) were used for cluster-specific enrichment analyses. (e) LD score regression identifies enrichment of GWAS SNPs for various skin and non-skin related conditions in gene regions specific to sub-clustered cell types (from the scRNA dataset) in human scalp. FDR-corrected P-values from LDSC enrichment tests are overlaid on the heatmap (*FDR < 0.05, **FDR < 0.005, ***FDR < 0.0005). (f) Same as in (E), but using only open-chromatin regions (from the scATAC dataset) that are implicated in peak-to-gene linkages (N = 98,188). (g) Fraction of fine-mapped SNPs for selected traits overlapping scalp CREs binned by fine-mapping posterior probability. (h) Fisher’s exact test enrichment of the nearest gene for fine-mapped trait-related SNPs in cell type–specific genes for sub-clustered cell types in human scalp. The FDR-corrected -log10 p-value is indicated by the color of the dots, and the dot size indicates the enrichment odds ratio.

Extended Data Fig. 9 Supplemental analyses of fmGWAS-linked genes.

(a) GO term enrichment for the top genes linked to fine-mapped SNPs by summed fine-mapping posterior probability in associated peak-to-gene linkages. (b) The top genes linked to peaks containing fine-mapped SNPs for alopecia areata. The heatmap shows relative gene expression for each high-resolution scRNA cluster. The number of linked fmSNPs per gene is indicated in the red bar plot to the right, and the total sum of fine-mapped posterior probability for linked SNPs is indicated in the blue bar plot. The grey bar plot shows the total number of identified peak-to-gene linkages for that gene in the entire scalp dataset. Gene names colored red indicate fine-mapped SNP to gene linkages supported by GTEx eQTLs. (c) Same as in (B), but for hair color.

Source data

Extended Data Fig. 10 Assessment of gkmSVM model performance and additional high-effect candidate fine-mapped SNPs.

(a) The area under the receiver operator (AUROC), or (b) precision recall (AUPRC) curves for the gkm-SVM machine learning classifiers for each of the cluster models. Each dot indicates a cross-validation fold (n = 10). Boxplots represent the median, 25th percentile and 75th percentile of the data, and whiskers represent the highest and lowest values within 1.5 times the interquartile range of the boxplot. (c) The overlap of training data (peak sequences) between models. (d) The performance of each cluster model on predicting test sequences from a non-target cluster. (e) Enrichment of high-effect fine-mapped SNPs from eczema relative to random fine-mapped SNPs in cis-regulatory regions. (f) Same as in (e), but for AGA. (g) Normalized chromatin accessibility landscape for cell type–specific pseudo bulk tracks around the BNC2 locus. Integrated BNC2 expression levels are shown in the violin plot for each cell type to the right. The position of ATAC-seq peaks, the GWAS lead SNP, the fine-mapped SNP candidates in LD with the lead SNP, and the candidate functional SNP are shown below the ATAC-seq tracks. Significant peak-to-gene linkages are indicated by loops connecting the BNC2 promoter to indicated peaks. (h) GkmExplain importance scores for the 50 bp region surrounding rs12350739, a hair color associated SNP that creates a JUN motif in a CRE linked to BNC2 expression. (i) Same as in (G), but for the ALX4 locus. (j) GkmExplain importance scores for the 50 bp region surrounding rs10769041, an AGA associated SNP that disrupts an ETS motif in a CRE linked to ALX4 expression.

Supplementary information

Supplementary Information

Supplementary Notes and Methods

Reporting Summary

Supplementary Tables

Supplementary Tables 1–12, with titles and descriptions included in a table of contents on page 1 of the spreadsheet.

Source data

Source Data

Statistical source data and additional details for Figs. 2c,d, 3j–l, 4,b,e, 5a,c–e and 6b, and Extended Data Figs. 6f–h and 9b,c. Source data are split and labeled by tab. Descriptions are included in a table of contents on page 1 of the spreadsheet.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ober-Reynolds, B., Wang, C., Ko, J.M. et al. Integrated single-cell chromatin and transcriptomic analyses of human scalp identify gene-regulatory programs and critical cell types for hair and skin diseases. Nat Genet 55, 1288–1300 (2023). https://doi.org/10.1038/s41588-023-01445-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-023-01445-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing