Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The Singapore National Precision Medicine Strategy

Abstract

Precision medicine promises to transform healthcare for groups and individuals through early disease detection, refining diagnoses and tailoring treatments. Analysis of large-scale genomic–phenotypic databases is a critical enabler of precision medicine. Although Asia is home to 60% of the world’s population, many Asian ancestries are under-represented in existing databases, leading to missed opportunities for new discoveries, particularly for diseases most relevant for these populations. The Singapore National Precision Medicine initiative is a whole-of-government 10-year initiative aiming to generate precision medicine data of up to one million individuals, integrating genomic, lifestyle, health, social and environmental data. Beyond technologies, routine adoption of precision medicine in clinical practice requires social, ethical, legal and regulatory barriers to be addressed. Identifying driver use cases in which precision medicine results in standardized changes to clinical workflows or improvements in population health, coupled with health economic analysis to demonstrate value-based healthcare, is a vital prerequisite for responsible health system adoption.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of Singapore’s NPM program.
Fig. 2: Singapore NPM clinical adoption strategy.

Similar content being viewed by others

References

  1. Shapiro, M. D., Tavori, H. & Fazio, S. PCSK9: from basic science discoveries to clinical trials. Circ. Res. 122, 1420–1438 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sahin, U., Karikó, K. & Türeci, Ö. mRNA-based therapeutics—developing a new class of drugs. Nat. Rev. Drug Discov. 13, 759–780 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Global Spending on Health: a World in Transition (WHO, 2019).

  4. Global Health Estimates 2019: Life Expectancy, 2000–2019 (WHO, 2020).

  5. Schroeder, S. A. Shattuck Lecture. We can do better—improving the health of the American people. N. Engl. J. Med. 357, 1221–1228 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Roden, D. M. et al. Pharmacogenomics. Lancet 394, 521–532 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Olstad, D. L. & McIntyre, L. Reconceptualising precision public health. BMJ Open 9, e030279 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Middleton, P. G. et al. Elexacaftor–tezacaftor–ivacaftor for cystic fibrosis with a single Phe508del allele. N. Engl. J. Med. 381, 1809–1819 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cully, M. Target validation: genetic information adds supporting weight. Nat. Rev. Drug Discov. 14, 525 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. King, E. A., Davis, J. W. & Degner, J. F. Are drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval. PLoS Genet. 15, e1008489 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ochoa D. et al. Human genetics evidence supports two-thirds of the 2021 FDA-approved drugs. Nat. Rev. Drug Discov. 21, 551 (2022).

  13. Stark, Z. et al. Integrating genomics into healthcare: a global responsibility. Am. J. Hum. Genet. 104, 13–20 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. The All of Us Research Program Investigators et al. The ‘All of Us’ Research Program. N. Engl. J. Med. 381, 668–676 (2019).

  15. Turnbull, C. et al. The 100 000 Genomes Project: bringing whole genome sequencing to the NHS. BMJ 361, k1687 (2018).

    Article  PubMed  Google Scholar 

  16. Stark, Z. et al. Australian genomics: a federated model for integrating genomics into healthcare. Am. J. Hum. Genet. 105, 7–14 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cohn, E. G., Henderson, G. E. & Appelbaum, P. S. Distributive justice, diversity, and inclusion in precision medicine: what will success look like? Genet. Med. 19, 157–159 (2017).

  18. Caffrey, M. Disparities in cancer care: has precision medicine widened the gap? AJMC (22 April 2021).

  19. Sirugo, G., Williams, S. M. & Tishkoff, S. A. The missing diversity in human genetic studies. Cell 177, 26–31 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 590, 290–299 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Manrai, A. K. et al. Genetic misdiagnoses and the potential for health disparities. N. Engl. J. Med. 375, 655–665 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51, 584–591 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Martin, A. R. et al. Human demographic history impacts genetic risk prediction across diverse populations. Am. J. Hum. Genet. 100, 635–649 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Privé, F. et al. Portability of 245 polygenic scores when derived from the UK Biobank and applied to 9 ancestry groups from the same cohort. Am. J. Hum. Genet. 109, 12–23 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Graham, S. E. et al. The power of genetic diversity in genome-wide association studies of lipids. Nature 600, 675–679 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Atkinson, E. G. et al. Tractor uses local ancestry to enable the inclusion of admixed individuals in GWAS and to boost power. Nat. Genet. 53, 195–204 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mahajan, A. et al. Trans-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nat. Genet. 54, 560–572 (2022).

  29. Chambers, J. C. et al. Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: a nested case–control study. Lancet Diabetes Endocrinol. 3, 526–534 (2015).

  30. Chandalia, M. et al. Insulin resistance and body fat distribution in South Asian men compared to Caucasian men. PLoS ONE 2, e812 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wu, D. et al. Genetic admixture in the culturally unique Peranakan Chinese population in Southeast Asia. Mol. Biol. Evol. 38, 4463–4474 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Population Trends, 2021 (Singapore Department of Statistics, 2021).

  33. Government Health Expenditure and Healthcare Financing (Singapore Ministry of Health, 2018).

  34. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1789–1858 (2018).

    Article  Google Scholar 

  35. Huang, K. K. et al. Genomic and epigenomic profiling of high-risk intestinal metaplasia reveals molecular determinants of progression to gastric cancer. Cancer Cell 33, 137–150 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Metspalu, A., Köhler, F., Laschinski, G., Ganten, D. & Roots, I. The Estonian Genome Project in the context of European genome research. Dtsch. Med. Wochenschr. 129, S25–S28 (2004).

    PubMed  Google Scholar 

  37. Chen, J. et al. Genomic landscape of lung adenocarcinoma in East Asians. Nat. Genet. 52, 177–186 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Bylstra, Y. et al. Implementation of genomics in medical practice to deliver precision medicine for an Asian population. NPJ Genom. Med. 4, 12 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. McGuire, A. L. et al. The road ahead in genetics and genomics. Nat. Rev. Genet. 21, 581–596 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Life Insurance Association (LIA) Moratorium on Genetic Testing and Insurance (Singapore Ministry of Health, 2021).

  41. Lysaght, T. et al. Trust and trade-offs in sharing data for precision medicine: a national survey of Singapore. J. Pers. Med. 11, 921 (2021).

  42. Lysaght, T. et al. ‘Who is watching the watchdog?’: ethical perspectives of sharing health-related data for precision medicine in Singapore. BMC Med. Ethics 21, 118 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ong, S., Ling, J., Ballantyne, A., Lysaght, T. & Xafis, V. Perceptions of ‘precision’ and ‘personalised’ medicine in Singapore and associated ethical issues. Asian Bioeth. Rev. 13, 179–194 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Majithia, S. et al. Cohort profile: the Singapore Epidemiology of Eye Diseases study (SEED). Int. J. Epidemiol. 50, 41–52 (2021).

    Article  PubMed  Google Scholar 

  45. Tan, K. et al. Cohort profile: the Singapore Multi-Ethnic Cohort (MEC) study. Int. J. Epidemiol. 47, 699–699j (2018).

    Article  PubMed  Google Scholar 

  46. Soh, S. et al. Cohort profile: Growing Up in Singapore Towards healthy Outcomes (GUSTO) birth cohort study. Int. J. Epidemiol. 43, 1401–1409 (2014).

    Article  PubMed  Google Scholar 

  47. Yap, J. et al. Harnessing technology and molecular analysis to understand the development of cardiovascular diseases in Asia: a prospective cohort study (SingHEART). BMC Cardiovasc. Disord. 19, 259 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Van der Auwera G. A. & O'Connor, B. D. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra 1st edn (O’Reilly Media, 2020).

  49. Poplin, R. et al. Scaling accurate genetic variant discovery to tens of thousands of samples. Preprint at bioRxiv https://doi.org/10.1101/201178 (2018).

  50. McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17, 122 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Landrum, M. J. et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 46, D1062–D1067 (2018).

  52. Code of Practice for Key Office Holders Under the Healthcare Services Act (Singapore Ministry of Health, 2019).

  53. Doyle, D. L. et al. 2013 review and update of the genetic counseling practice based competencies by a task force of the accreditation council for genetic counseling. J. Genet. Couns. 25, 868–879 (2016).

    Article  PubMed  Google Scholar 

  54. Christenhusz, G. M., Devriendt, K. & Dierickx, K. To tell or not to tell? A systematic review of ethical reflections on incidental findings arising in genetics contexts. Eur. J. Hum. Genet. 21, 248–255 (2013).

    Article  PubMed  Google Scholar 

  55. Green, R. C. et al. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet. Med. 15, 565–574 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. eMERGE Clinical Annotation Working Group. Frequency of genomic secondary findings among 21,915 eMERGE network participants. Genet. Med. 22, 1470–1477 (2020).

  57. Kuo, C. W. et al. Frequency and spectrum of actionable pathogenic secondary findings in Taiwanese exomes. Mol. Genet. Genomic Med. 8, e1455 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen, W. et al. Secondary findings in 421 whole exome-sequenced Chinese children. Hum. Genomics 12, 42 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Van Hout, C. V. et al. Exome sequencing and characterization of 49,960 individuals in the UK Biobank. Nature 586, 749–756 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Cohen, J. T., Goodell, S. & Neumann, P. J. The cost savings and cost-effectiveness of clinical preventive care. In Synthesis Project (Robert Wood Johnson Foundation, 2009).

  61. Hatz, M. H., Schremser, K. & Rogowski, W. H. Is individualized medicine more cost-effective? A systematic review. Pharmacoeconomics 32, 443–455 (2014).

    Article  PubMed  Google Scholar 

  62. Kasztura, M., Richard, A., Bempong, N. E., Loncar, D. & Flahault, A. Cost-effectiveness of precision medicine: a scoping review. Int. J. Public Health 64, 1261–1271 (2019).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all investigators, staff members and study participants of the contributing cohorts and studies: (1) the HELIOS study at the Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; (2) the GUSTO study jointly hosted by the National University Hospital, KK Women’s and Children’s Hospital, the National University of Singapore and the Singapore Institute for Clinical Sciences, the Agency for Science Technology and Research (A*STAR); (3) the SEED cohort at the Singapore Eye Research Institute; (4) the MEC, National University of Singapore; (5) the PRISM cohort; and (6) the TTSH Personalised Medicine Normal Controls cohort. We also thank the National Supercomputing Centre, Singapore (https://www.ncss.sg) for computation resources. The SG10K_Health project is funded by the Industry Alignment Fund (Pre-Positioning) (IAF-PP, H17/01/a0/007); the project made use of participating study cohorts supported by the following funding sources: (1) the HELIOS study by grants from a Strategic Initiative at Lee Kong Chian School of Medicine, the Singapore MOH under its Singapore Translational Research Investigator Award (NMRC/STaR/0028/2017) and the IAF-PP (H18/01/a0/016); (2) the GUSTO study by the Singapore National Research Foundation under its Translational and Clinical Research Flagship Program and administered by the Singapore MOH’s National Medical Research Council Singapore (NMRC/TCR/004-NUS/2008, NMRC/TCR/012-NUHS/2014) with additional funding support available through the A*STAR and the IAF-PP (H17/01/a0/005); (3) the SEED study by NMRC/CIRG/1417/2015, NMRC/CIRG/1488/2018 and NMRC/OFLCG/004/2018; (4) the MEC by individual research and clinical scientist award schemes from the Singapore National Medical Research Council (including MOH-000271-00) and the Singapore Biomedical Research Council, the Singapore MOH, the National University of Singapore and the Singapore National University Health System; (5) the PRISM cohort study by NMRC/CG/M006/2017_NHCS, NMRC/STaR/0011/2012, NMRC/STaR/0026/2015, the Lee Foundation and the Tanoto Foundation; and (6) the TTSH cohort study by NMRC/CG12AUG2017 and CGAug16M012. This research is also supported by the National Research Foundation Singapore under its NPM program Phase II funding (MOH-000588) and administered by the Singapore MOH’s National Medical Research Council.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

Conceived and led the NPM program: P.T., E.S.T. and J.C.C. Cohort recruitment and sample collection: J.Lee, J.J.Y.S., T.Y.W., C.W.L.C., P.D.G., L.L.G., X.S., C.Y.Cheng, S.D., N.K., K.P.L., E.S.T. and J.C.C. Sample processing and data analysis: N.B., M.H., R.T.M., C.B., W.K.L., J.F.C., J.Liu, S.P., S.M.S., C.S.V., P.K. and R.S.M.G. Enabling Platform workgroup: P.T., C.Y.Chua, K.H.K.B. and T.W.T. Regulation and Ethics workgroup: P.M.L.T. and R.C. Clinical Adoption workgroup: K.M., I.C., D.L., S.V. and M.K. Public and Community Trust workgroup: T.M.L., C.H. and S.W.S. Industry Development workgroup: W.Y.C., K.E.T., J.Y., W.Z. and Y.K.S. Workforce Development workgroup: K.T.G. The SG10K_Health Consortium was involved in sample collection and processing and data analysis. The manuscript was co-written by E.W., P.T., E.S.T. and J.C.C.

Corresponding authors

Correspondence to John C. Chambers, E. Shyong Tai or Patrick Tan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Mark Caulfield and Philip Wilcox for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, E., Bertin, N., Hebrard, M. et al. The Singapore National Precision Medicine Strategy. Nat Genet 55, 178–186 (2023). https://doi.org/10.1038/s41588-022-01274-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-022-01274-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing