Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Somatic mutations of GNA11 and GNAQ in CTNNB1-mutant aldosterone-producing adenomas presenting in puberty, pregnancy or menopause

Abstract

Most aldosterone-producing adenomas (APAs) have gain-of-function somatic mutations of ion channels or transporters. However, their frequency in aldosterone-producing cell clusters of normal adrenal gland suggests a requirement for codriver mutations in APAs. Here we identified gain-of-function mutations in both CTNNB1 and GNA11 by whole-exome sequencing of 3/41 APAs. Further sequencing of known CTNNB1-mutant APAs led to a total of 16 of 27 (59%) with a somatic p.Gln209His, p.Gln209Pro or p.Gln209Leu mutation of GNA11 or GNAQ. Solitary GNA11 mutations were found in hyperplastic zona glomerulosa adjacent to double-mutant APAs. Nine of ten patients in our UK/Irish cohort presented in puberty, pregnancy or menopause. Among multiple transcripts upregulated more than tenfold in double-mutant APAs was LHCGR, the receptor for luteinizing or pregnancy hormone (human chorionic gonadotropin). Transfections of adrenocortical cells demonstrated additive effects of GNA11 and CTNNB1 mutations on aldosterone secretion and expression of genes upregulated in double-mutant APAs. In adrenal cortex, GNA11/Q mutations appear clinically silent without a codriver mutation of CTNNB1.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Clinical and cellular schemata showing the critical roles of GNA11/Q, and their p.Gln209 residue, in the production of aldosterone.
Fig. 2: Mutations of GNA11/Q Q209 increase aldosterone production in human adrenocortical cells.
Fig. 3: High LHCGR expression in GNA11/Q and CTNNB1 double-mutant adrenal cells.
Fig. 4: Gene expression profiles in GNA11/Q and CTNNB1 double-mutant adrenal cells.
Fig. 5: Expression of aldosterone synthase (CYP11B2) and 11β-hydroxylase (CYP11B1) in GNA11/Q and CTNNB1 double-mutant APAs.
Fig. 6: GNA11 somatic mutations were found in adrenals adjacent to double-mutant APAs.

Data availability

Source data for Figs. 2a–f and 3a–c,e,g are provided with the paper. The raw RNA-seq dataset analyzed to generate Fig. 4a,b, Supplementary Table 3 and Supplementary Fig. 4 is available upon request from the Science for Life Laboratory Data Centre through the link https://doi.org/10.17044/NBIS/G000007. Regulations by the service provider may make access technically restricted to PIs at Swedish organizations. The microarray datasets analyzed to generate Fig. 4a,b are deposited in the Gene Expression Omnibus database (GSE64957) or are available from the corresponding author on reasonable request. The WES raw data of the 41 APAs and controls investigated for recurrent pathogenic somatic mutation are available from the Sequence Read Archive under accession nos. PRJNA732946 and PRJNA729738. All other raw data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Choi, M. et al. K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science 331, 768–772 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Beuschlein, F. et al. Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension. Nat. Genet. 45, 440–444 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Scholl, U. I. et al. Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism. Nat. Genet. 45, 1050–1054 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Azizan, E. A. et al. Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension. Nat. Genet. 45, 1055–1060 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Azizan, E. A. et al. Microarray, qPCR and KCNJ5 sequencing of aldosterone-producing adenomas reveal differences in genotype and phenotype between zona glomerulosa- and zona fasciculata-like tumors. J. Clin. Endocrinol. Metab. 97, E819–E829 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Monticone, S. et al. Immunohistochemical, genetic and clinical characterization of sporadic aldosterone-producing adenomas. Mol. Cell Endocrinol. 411, 146–154 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Akerstrom, T. et al. Novel somatic mutations and distinct molecular signature in aldosterone-producing adenomas. Endocr. Relat. Cancer 22, 735–744 (2015).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  8. 8.

    De Sousa, K. et al. Genetic, cellular, and molecular heterogeneity in adrenals with aldosterone-producing adenoma. Hypertension 75, 1034–1044 (2020).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  9. 9.

    Nanba, K. et al. Targeted molecular characterization of aldosterone-producing adenomas in White Americans. J. Clin. Endocrinol. Metab. 103, 3869–3876 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Wu, V. C. et al. The prevalence of CTNNB1 mutations in primary aldosteronism and consequences for clinical outcomes. Sci. Rep. 7, 39121 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Nishimoto, K. et al. Aldosterone-stimulating somatic gene mutations are common in normal adrenal glands. Proc. Natl Acad. Sci. USA 112, E4591–E4599 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Williams, T. A. et al. Visinin-like 1 is upregulated in aldosterone-producing adenomas with KCNJ5 mutations and protects from calcium-induced apoptosis. Hypertension 59, 833–839 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Akerstrom, T. et al. Activating mutations in CTNNB1 in aldosterone producing adenomas. Sci. Rep. 6, 19546 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  14. 14.

    Tadjine, M., Lampron, A., Ouadi, L. & Bourdeau, I. Frequent mutations of beta-catenin gene in sporadic secreting adrenocortical adenomas. Clin. Endocrinol. (Oxf.) 68, 264–270 (2008).

    CAS  Google Scholar 

  15. 15.

    Omata, K. et al. Cellular and genetic causes of idiopathic hyperaldosteronism. Hypertension 72, 874–880 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Teo, A. E. et al. Pregnancy, primary aldosteronism, and adrenal CTNNB1 mutations. N. Engl. J. Med. 373, 1429–1436 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Kalinec, G., Nazarali, A. J., Hermouet, S., Xu, N. & Gutkind, J. S. Mutated alpha subunit of the Gq protein induces malignant transformation in NIH 3T3 cells. Mol. Cell Biol. 12, 4687–4693 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Gutowski, S. et al. Antibodies to the alpha q subfamily of guanine nucleotide-binding regulatory protein alpha subunits attenuate activation of phosphatidylinositol 4,5-bisphosphate hydrolysis by hormones. J. Biol. Chem. 266, 20519–20524 (1991).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Backman, S. et al. RNA sequencing provides novel insights into the transcriptome of aldosterone producing adenomas. Sci. Rep. 9, 6269 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  20. 20.

    Wiese, M. et al. The beta-catenin/CBP-antagonist ICG-001 inhibits pediatric glioma tumorigenicity in a Wnt-independent manner. Oncotarget 8, 27300–27313 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Zhou, L. et al. Multiple genes of the renin-angiotensin system are novel targets of Wnt/beta-catenin signaling. J. Am. Soc. Nephrol. 26, 107–120 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Doghman, M., Cazareth, J. & Lalli, E. The T cell factor/beta-catenin antagonist PKF115-584 inhibits proliferation of adrenocortical carcinoma cells. J. Clin. Endocrinol. Metab. 93, 3222–3225 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Zhou, T. et al. CTNNB1 knockdown inhibits cell proliferation and aldosterone secretion through inhibiting Wnt/beta-catenin signaling in H295R cells. Technol. Cancer Res. Treat. 19, 1533033820979685 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Jeppesen, J. V. et al. LH-receptor gene expression in human granulosa and cumulus cells from antral and preovulatory follicles. J. Clin. Endocrinol. Metab. 97, E1524–E1531 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Breen, S. M. et al. Ovulation involves the luteinizing hormone-dependent activation of G(q/11) in granulosa cells. Mol. Endocrinol. 27, 1483–1491 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Gazdar, A. F. et al. Establishment and characterization of a human adrenocortical carcinoma cell line that expresses multiple pathways of steroid biosynthesis. Cancer Res. 50, 5488–5496 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Tissier, F. et al. Mutations of beta-catenin in adrenocortical tumors: activation of the Wnt signaling pathway is a frequent event in both benign and malignant adrenocortical tumors. Cancer Res. 65, 7622–7627 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Boulkroun, S. et al. Aldosterone-producing adenoma formation in the adrenal cortex involves expression of stem/progenitor cell markers. Endocrinology 152, 4753–4763 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Shaikh, L. H. et al. LGR5 activates noncanonical Wnt signaling and inhibits aldosterone production in the human adrenal. J. Clin. Endocrinol. Metab. 100, E836–E844 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Zhou, J. et al. Transcriptome pathway analysis of pathological and physiological aldosterone-producing human tissues. Hypertension 68, 1424–1431 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Taylor, M. J. et al. Chemogenetic activation of adrenocortical Gq signaling causes hyperaldosteronism and disrupts functional zonation. J. Clin. Invest. 130, 83–93 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Leng, S. et al. beta-Catenin and FGFR2 regulate postnatal rosette-based adrenocortical morphogenesis. Nat. Commun. 11, 1680 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Schwindinger, W. F., Francomano, C. A. & Levine, M. A. Identification of a mutation in the gene encoding the alpha subunit of the stimulatory G protein of adenylyl cyclase in McCune–Albright syndrome. Proc. Natl Acad. Sci. USA 89, 5152–5156 (1992).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Weinstein, L. S. et al. Activating mutations of the stimulatory G protein in the McCune–Albright syndrome. N. Engl. J. Med. 325, 1688–1695 (1991).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Idowu, B. D. et al. A sensitive mutation-specific screening technique for GNAS1 mutations in cases of fibrous dysplasia: the first report of a codon 227 mutation in bone. Histopathology 50, 691–704 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Vasilev, V. et al. McCune–Albright syndrome: a detailed pathological and genetic analysis of disease effects in an adult patient. J. Clin. Endocrinol. Metab. 99, E2029–E2038 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Rey, R. A. et al. Unexpected mosaicism of R201H-GNAS1 mutant-bearing cells in the testes underlie macro-orchidism without sexual precocity in McCune–Albright syndrome. Hum. Mol. Genet. 15, 3538–3543 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Wu, D. Q., Lee, C. H., Rhee, S. G. & Simon, M. I. Activation of phospholipase C by the alpha subunits of the Gq and G11 proteins in transfected Cos-7 cells. J. Biol. Chem. 267, 1811–1817 (1992).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Ayturk, U. M. et al. Somatic activating mutations in GNAQ and GNA11 are associated with congenital hemangioma. Am. J. Hum. Genet. 98, 789–795 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Van Raamsdonk, C. D. et al. Mutations in GNA11 in uveal melanoma. N. Engl. J. Med. 363, 2191–2199 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Shirley, M. D. et al. Sturge–Weber syndrome and port-wine stains caused by somatic mutation in Gnaq. N. Engl. J. Med. 368, 1971–1979 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Thomas, A. C. et al. Mosaic activating mutations in GNA11 and GNAQ are associated with phakomatosis pigmentovascularis and extensive dermal melanocytosis. J. Invest. Dermatol. 136, 770–778 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Simon, D. P. & Hammer, G. D. Adrenocortical stem and progenitor cells: implications for adrenocortical carcinoma. Mol. Cell Endocrinol. 351, 2–11 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Berthon, A. et al. WNT/beta-catenin signalling is activated in aldosterone-producing adenomas and controls aldosterone production. Hum. Mol. Genet. 23, 889–905 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Lerario, A. M., Moraitis, A. & Hammer, G. D. Genetics and epigenetics of adrenocortical tumors. Mol. Cell Endocrinol. 386, 67–84 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Wang, J. J., Peng, K. Y., Wu, V. C., Tseng, F. Y. & Wu, K. D. CTNNB1 mutation in aldosterone producing adenoma. Endocrinol. Metab. (Seoul) 32, 332–338 (2017).

    CAS  Article  Google Scholar 

  47. 47.

    Assie, G. et al. Integrated genomic characterization of adrenocortical carcinoma. Nat. Genet. 46, 607–612 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Jakobsen, J. N., Santoni-Rugiu, E., Grauslund, M., Melchior, L. & Sorensen, J. B. Concomitant driver mutations in advanced EGFR-mutated non-small-cell lung cancer and their impact on erlotinib treatment. Oncotarget 9, 26195–26208 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Gainor, J. F. et al. ALK rearrangements are mutually exclusive with mutations in EGFR or KRAS: an analysis of 1,683 patients with non-small cell lung cancer. Clin. Cancer Res. 19, 4273–4281 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Nanba, K. et al. Genetic characteristics of aldosterone-producing adenomas in Blacks. Hypertension 73, 885–892 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Pignatti, E. et al. Beta-catenin causes adrenal hyperplasia by blocking zonal transdifferentiation. Cell Rep. 31, 107524 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Vouillarmet, J. et al. Aldosterone-producing adenoma with a somatic KCNJ5 mutation revealing APC-dependent familial adenomatous polyposis. J. Clin. Endocrinol. Metab. 101, 3874–3878 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    Polak, P. et al. Cell-of-origin chromatin organization shapes the mutational landscape of cancer. Nature 518, 360–364 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Yeh, I. et al. Combined activation of MAP kinase pathway and beta-catenin signaling cause deep penetrating nevi. Nat. Commun. 8, 644 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  55. 55.

    Piaggio, F. et al. Secondary somatic mutations in G-protein-related pathways and mutation signatures in uveal melanoma. Cancers (Basel) 11, 1688 (2019).

    CAS  Article  Google Scholar 

  56. 56.

    Chen, X. et al. The melanoma-linked ‘redhead’ MC1R influences dopaminergic neuron survival. Ann. Neurol. 81, 395–406 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Cavlan, D., Storr, H. L., Berney, D., Evagora, C. & King, P. J. Adrenal pigmentation in PPNAD is a result of melanin deposition and associated with upregulation of the melanocortin 1 receptor. Endocr. Abstr. 38, 154 (2015).

    Google Scholar 

  58. 58.

    Binder, J. X. et al. COMPARTMENTS: unification and visualization of protein subcellular localization evidence. Database (Oxf.) 2014, bau012 (2014).

    Article  CAS  Google Scholar 

  59. 59.

    de Lau, W. et al. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 476, 293–297 (2011).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  60. 60.

    Vidal, V. et al. The adrenal capsule is a signaling center controlling cell renewal and zonation through Rspo3. Genes Dev. 30, 1389–1394 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Yi, H., Wang, Y., Kavallaris, M. & Wang, J. Y. Lgr4-mediated potentiation of Wnt/β-catenin signaling promotes MLL leukemogenesis via an Rspo3/Wnt3a-Gnaq pathway in leukemic stem cells. Blood 122, 887 (2013).

    Article  Google Scholar 

  62. 62.

    Carter, J. M. et al. CTNNB1 mutations and estrogen receptor expression in neuromuscular choristoma and its associated fibromatosis. Am. J. Surg. Pathol. 40, 1368–1374 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    Crago, A. M. et al. Near universal detection of alterations in CTNNB1 and Wnt pathway regulators in desmoid-type fibromatosis by whole-exome sequencing and genomic analysis. Genes Chromosomes Cancer 54, 606–615 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Maria, A. G. et al. Mosaicism for KCNJ5 causing early-onset primary aldosteronism due to bilateral adrenocortical hyperplasia. Am. J. Hypertens. 33, 124–130 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  65. 65.

    Zhang, E. D. et al. Mutation spectrum in GNAQ and GNA11 in Chinese uveal melanoma. Precis. Clin. Med. 2, 213–220 (2019).

    Article  Google Scholar 

  66. 66.

    Gerstenblith, M. R., Goldstein, A. M., Fargnoli, M. C., Peris, K. & Landi, M. T. Comprehensive evaluation of allele frequency differences of MC1R variants across populations. Hum. Mutat. 28, 495–505 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. 67.

    Eguchi, K. et al. An adverse pregnancy-associated outcome due to overlooked primary aldosteronism. Intern. Med. 53, 2499–2504 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Saner-Amigh, K. et al. Elevated expression of luteinizing hormone receptor in aldosterone-producing adenomas. J. Clin. Endocrinol. Metab. 91, 1136–1142 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  69. 69.

    Gagnon, N. et al. Genetic characterization of GnRH/LH-responsive primary aldosteronism. J. Clin. Endocrinol. Metab. 103, 2926–2935 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  70. 70.

    Albiger, N. M. et al. A case of primary aldosteronism in pregnancy: do LH and GNRH receptors have a potential role in regulating aldosterone secretion? Eur. J. Endocrinol. 164, 405–412 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71.

    Berthon, A., Drelon, C. & Val, P. Pregnancy, primary aldosteronism, and somatic CTNNB1 mutations. N. Engl. J. Med. 374, 1493–1494 (2016).

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Murtha, T. D., Carling, T. & Scholl, U. I. Pregnancy, primary aldosteronism, and somatic CTNNB1 mutations. N. Engl. J. Med. 374, 1492–1493 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Burton, T. J. et al. Evaluation of the sensitivity and specificity of (11)C-metomidate positron emission tomography (PET)-CT for lateralizing aldosterone secretion by Conn’s adenomas. J. Clin. Endocrinol. Metab. 97, 100–109 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    Letavernier, E. et al. Blood pressure outcome of adrenalectomy in patients with primary hyperaldosteronism with or without unilateral adenoma. J. Hypertens. 26, 1816–1823 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  75. 75.

    Funder, J. W. et al. Case detection, diagnosis, and treatment of patients with primary aldosteronism: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 93, 3266–3281 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76.

    Fernandes-Rosa, F. L. et al. Genetic spectrum and clinical correlates of somatic mutations in aldosterone-producing adenoma. Hypertension 54, 354–361 (2014).

    Article  CAS  Google Scholar 

  77. 77.

    Akerstrom, T. et al. Comprehensive re-sequencing of adrenal aldosterone producing lesions reveal three somatic mutations near the KCNJ5 potassium channel selectivity filter. PLoS ONE 7, e41926 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  78. 78.

    Gomez-Sanchez, C. E. et al. Development of monoclonal antibodies against human CYP11B1 and CYP11B2. Mol. Cell Endocrinol. 383, 111–117 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  79. 79.

    Bustin, S. A. Why the need for qPCR publication guidelines? The case for MIQE. Methods 50, 217–226 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

The CTNNB1 plasmid was a kind gift of M. Bienz, Medical Research Council Laboratory of Molecular Biology, Cambridge. The 11C-metomidate positron emission tomography (PET) CT The project was funded in part by the British Heart Foundation through a Clinical Research Training Fellowship (no. FS/19/50/34566) and PhD Studentship (no. FS/14/75/31134), by the National Institute of Health Research (NIHR) through Senior Investigator award no. NF-SI-0512-10052 (all to M.J.B.) and by NIHR Efficacy and Mechanisms Evaluation Project (no. 14/145/09, to W.M.D., M.G. and M.J.B.) and Barts and the London Charity project (no. MGU0360), to W.M.D. and M.J.B. The project was further funded through institutional support from INSERM, Agence Nationale de la Recherche (no. ANR-15-CE14-0017-03) and Fondation pour la Recherche Médicale (no. EQU201903007864) to M.-C.Z. and the NIHR Advanced Fellowship (no. NIHR3000098) to H.L.S. E.A.B.A. is a Royal Society-Newton Advanced Research Fellow (no. NA170257/FF-2018-033). R.V.T. is supported by a Wellcome Trust Investigator Award (no. 106995/Z/15/Z) and the NIHR Oxford Biomedical Research Centre (BRC) Programme. C.P.C. is supported by the NIHR BRC at Barts and The London School of Medicine and Dentistry. M.G., A.M., and R.S. are supported by the NIHR Cambridge BRC (no. IS-BRC-1215-20014). The research of J.L.K., Z.T. and R.F. was supported by the National Medical Research Council and BRC of Singapore. Research in London and Cambridge, UK, was further supported by the NIHR Barts Cardiovascular BRC (no. IS-BRC-1215-20022) and the Cambridge BRC and BRC-funded Tissue Bank. The research utilized Queen Mary University of London’s Apocrita HPC facility, supported by QMUL Research-IT (https://doi.org/10.5281/zenodo.438045). Assistance from the Endocrine Unit Laboratory of the National University of Malaysia (UKM) Medical Centre, and from L. K. Chin and S. Khadijah (UKM) is acknowledged.

Author information

Affiliations

Authors

Contributions

C.P.C., E.A.B.A. and M.J.B. discovered the mutations in GNA11 and GNAQ, replicated by J.Z. and F.L.F.-R. J.Z., E.A.B.A., C.P.C., F.L.F.-R., S. Boulkroun, H.L.S., M.-C.Z. and M.J.B. conceived and designed the subsequent experiments/analyses. C.J., A.T., H.L.S., E.C., G.A., X.W., E.G., L.A., S. Backman, P.H., P.B., T.A., R.S., D.M.B., J.P.K., W.M.D., L.P. and F.E.K.F. contributed to cohort ascertainment, phenotypic characterization and recruitment. S. Backman, C.P.C., S.P., Z.T., L.A.M., T.A. and S.G. contributed to WES/RNA-seq production, validation, analysis and reanalysis. J.Z., F.L.F.-R., S. Boulkroun, X.W., A.E.D.T., E.A.B.A., E.C., S.G., G.A. and T.A. performed targeted sequencing and RT–qPCR analyses. J.Z. performed LCM and genotyping of adrenal zones and biopsy punches. S.J., S. Boulkroun, A.M. and J.Z. performed, and F.L.F.-R. and E.A.B.A. analyzed, IHC staining. C.E.G.S. developed antisera for use in IHC. J.Z., S.G., A.G., K.E.L. and R.V.T. contributed to plasmid construction for GNA11 and GNAQ. J.Z., E.A.B.A. and G.A. performed the functional experiments on transfected H295R and primary human adrenal cells. J.Z. and S.O. undertook confocal analyses. J.Z., E.A.B.A., F.L.F.-R., C.A.M., R.F., E.W., D.K., J.L.K., Z.T. and C.P.C. performed ddPCR, WES and NGS for genotyping of adjacent adrenal regions. C.P.C., J.Z., E.A.B.A. and M.J.B. contributed to statistical analyses. E.A.B.A. and M.J.B. drafted the manuscript, for which J.Z., E.A.B.A., C.P.C., F.L.F.-R., S. Boulkroun, T.A., A.M. and M.J.B. contributed figures. C.P.C., F.L.F.-R., S. Boulkroun, M.G., V.A.K. and M.-C.Z. critically reviewed the text. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Elena A. B. Azizan, Maria-Christina Zennaro or Morris J. Brown.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Genetics thanks Lee Weinstein and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 High LHCGR expression in GNA11 and CTNNB1 double mutant co-transfected primary human adrenal cells.

a, APA 351 T cells transfected with CTNNB1 (untagged plasmid) and GNA11 (GFP-tagged plasmid) wild-type or Q209P (red boxed cell). LHCGR and CTNNB1 expression was visualized as in Fig. 3f using the primary antibody rabbit anti-LHCGR #NLS1436 (1:200; Novus Biologicals, UK) and the primary antibody mouse anti-CTNNB1 #610154 (1:100; BD transduction Lab, USA), respectively. Scale bars, 50 μm. b, Immunofluorescence of LHCGR in APA 351 T cells was quantified using corrected total cell fluorescence (CTCF). LHCGR expression was increased in cells expressing high CTNNB1 and GNA11 Q209P (the exact number, n, of cells quantified from two independent experiment are as indicated below the x-axis; the P-values indicated are according to Kolmogorov–Smirnov statistical test). High CTNNB1 was determined as CTCF > 10,000. Data are presented as mean values + /- s.e.m.

Extended Data Fig. 2 GNA11 somatic mutations were found in the adjacent adrenals to double-mutant APA of patient 6.

a, From six different regions (R1-5, at the edges of the adrenal cortex, R6 and APA, within the circled areas) in the formalin fixed paraffin embedded (FFPE) adjacent adrenal gland, genomic DNA samples of patient 6 were genotyped for CTNNB1 and GNA11 mutations. Immunohistochemistry of KCNJ5 and CYP11B2 were used for region selection. Scale bar, 10 mm and 50 μm as indicated. b, Sanger sequencing identified weak chromatogram peaks of CTNNB1 G34R and GNA11 Q209P somatic mutations in region 6 of the adjacent adrenal gland. c, Next generation sequencing confirmed the CTNNB1 G34R and GNA11 Q209P mutations in region 6 of the adjacent adrenal gland. d, qPCR of R1-6 and APA showed a 337-fold higher of TMEM132E, 38-fold higher of CYP11B2, 14-fold higher of DKK1 and 10-fold higher of LHCGR expression in region 6 compared to region 5. Regions 1-5 have similar expression of the above genes. The APA had the highest expression of CYP11B2, TMEM132E, DKK1, LHCGR and lowest expression of CYP11B1 and LGR5 compared to regions 1–6.

Supplementary information

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Azizan, E.A.B., Cabrera, C.P. et al. Somatic mutations of GNA11 and GNAQ in CTNNB1-mutant aldosterone-producing adenomas presenting in puberty, pregnancy or menopause. Nat Genet 53, 1360–1372 (2021). https://doi.org/10.1038/s41588-021-00906-y

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing