Clinical use of current polygenic risk scores may exacerbate health disparities


Polygenic risk scores (PRS) are poised to improve biomedical outcomes via precision medicine. However, the major ethical and scientific challenge surrounding clinical implementation of PRS is that those available today are several times more accurate in individuals of European ancestry than other ancestries. This disparity is an inescapable consequence of Eurocentric biases in genome-wide association studies, thus highlighting that—unlike clinical biomarkers and prescription drugs, which may individually work better in some populations but do not ubiquitously perform far better in European populations—clinical uses of PRS today would systematically afford greater improvement for European-descent populations. Early diversifying efforts show promise in leveling this vast imbalance, even when non-European sample sizes are considerably smaller than the largest studies to date. To realize the full and equitable potential of PRS, greater diversity must be prioritized in genetic studies, and summary statistics must be publically disseminated to ensure that health disparities are not increased for those individuals already most underserved.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Ancestry of GWAS participants over time, as compared with the global population.
Fig. 2: Demographic relationships, allele frequency differences and local LD patterns between population pairs.
Fig. 3: Prediction accuracy relative to European-ancestry individuals across 17 quantitative traits and 5 continental populations in the UKBB.
Fig. 4: Polygenic risk prediction accuracy in Japanese, British and African-descent individuals, on the basis of using independent GWAS of equal sample sizes in the BBJ and UKBB.


  1. 1.

    Knowles, J. W. & Ashley, E. A. Cardiovascular disease: the rise of the genetic risk score. PLoS Med. 15, e1002546–e1002547 (2018).

    Article  Google Scholar 

  2. 2.

    Maas, P. et al. Breast cancer risk from modifiable and nonmodifiable risk factors among white women in the United States. JAMA Oncol. 2, 1295–1302 (2016).

    Article  Google Scholar 

  3. 3.

    Schumacher, F. R. et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat. Genet. 50, 928–936 (2018).

    CAS  Article  Google Scholar 

  4. 4.

    Sharp, S. A. et al. Development and standardization of an improved type 1 diabetes genetic risk score for use in newborn screening and incident diagnosis. Diabetes Care 42, 200–207 (2019).

    CAS  Article  Google Scholar 

  5. 5.

    Khera, A. V. et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat. Genet. 50, 1219–1224 (2018).

    CAS  Article  Google Scholar 

  6. 6.

    Kullo, I. J. et al. Incorporating a genetic risk score into coronary heart disease risk estimates: effect on low-density lipoprotein cholesterol levels (the MI-GENES Clinical Trial). Circulation 133, 1181–1188 (2016).

    Article  Google Scholar 

  7. 7.

    Natarajan, P. et al. Polygenic risk score identifies subgroup with higher burden of atherosclerosis and greater relative benefit from statin therapy in the primary prevention setting. Circulation 135, 2091–2101 (2017).

    Article  Google Scholar 

  8. 8.

    Paquette, M. et al. Polygenic risk score predicts prevalence of cardiovascular disease in patients with familial hypercholesterolemia. J. Clin. Lipidol. 11, 725–732.e5 (2017).

    Article  Google Scholar 

  9. 9.

    Tikkanen, E., Havulinna, A. S., Palotie, A., Salomaa, V. & Ripatti, S. Genetic risk prediction and a 2-stage risk screening strategy for coronary heart disease. Arterioscler. Thromb. Vasc. Biol. 33, 2261–2266 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    Frieser, M. J., Wilson, S. & Vrieze, S. Behavioral impact of return of genetic test results for complex disease: systematic review and meta-analysis. Health Psychol. 37, 1134–1144 (2018).

    Article  Google Scholar 

  11. 11.

    Khera, A. V. et al. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N. Engl. J. Med. 375, 2349–2358 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    Khera, A. V. & Kathiresan, S. Genetics of coronary artery disease: discovery, biology and clinical translation. Nat. Rev. Genet. 18, 331–344 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    Martin, A. R. et al. Human demographic history impacts genetic risk prediction across diverse populations. Am. J. Hum. Genet. 100, 635–649 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    Scutari, M., Mackay, I. & Balding, D. Using genetic distance to infer the accuracy of genomic prediction. PLoS Genet. 12, e1006288 (2016).

    Article  Google Scholar 

  15. 15.

    Vilhjálmsson, B. J. et al. Modeling linkage disequilibrium increases accuracy of polygenic risk scores. Am. J. Hum. Genet. 97, 576–592 (2015).

    Article  Google Scholar 

  16. 16.

    Ware, E. B. et al. Heterogeneity in polygenic scores for common human traits. Preprint at (2017).

  17. 17.

    Curtis, D. Polygenic risk score for schizophrenia is more strongly associated with ancestry than with schizophrenia. Psychiatr. Genet. 28, 85–89 (2018).

    Article  Google Scholar 

  18. 18.

    Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).

    Article  Google Scholar 

  19. 19.

    Belsky, D. W. et al. Development and evaluation of a genetic risk score for obesity. Biodemography Soc. Biol. 59, 85–100 (2013).

    Article  Google Scholar 

  20. 20.

    Domingue, B. W., Belsky, D., Conley, D., Harris, K. M. & Boardman, J. D. Polygenic influence on educational attainment: new evidence from The National Longitudinal Study of Adolescent to Adult Health. AERA Open 1, 1–13 (2015).

    Article  Google Scholar 

  21. 21.

    Lee, J. J. et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat. Genet. 50, 1112–1121 (2018).

    CAS  Article  Google Scholar 

  22. 22.

    Vassos, E. et al. An examination of polygenic score risk prediction in individuals with first-episode psychosis. Biol. Psychiatry 81, 470–477 (2017).

    Article  Google Scholar 

  23. 23.

    Akiyama, M. et al. Genome-wide association study identifies 112 new loci for body mass index in the Japanese population. Nat. Genet. 49, 1458–1467 (2017).

    CAS  Article  Google Scholar 

  24. 24.

    Li, Z. et al. Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia. Nat. Genet. 49, 1576–1583 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    Need, A. C. & Goldstein, D. B. Next generation disparities in human genomics: concerns and remedies. Trends Genet. 25, 489–494 (2009).

    CAS  Article  Google Scholar 

  26. 26.

    Popejoy, A. B. & Fullerton, S. M. Genomics is failing on diversity. Nature 538, 161–164 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Morales, J. et al. A standardized framework for representation of ancestry data in genomics studies, with application to the NHGRI-EBI GWAS Catalog. Genome Biol. 19, 21 (2018).

    Article  Google Scholar 

  28. 28.

    Rosenberg, N. A. et al. Genome-wide association studies in diverse populations. Nat. Rev. Genet. 11, 356–366 (2010).

    CAS  Article  Google Scholar 

  29. 29.

    Sham, P. C., Cherny, S. S., Purcell, S. & Hewitt, J. K. Power of linkage versus association analysis of quantitative traits, by use of variance-components models, for sibship data. Am. J. Hum. Genet. 66, 1616–1630 (2000).

    CAS  Article  Google Scholar 

  30. 30.

    1000 Genomes Project Consortium. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  Google Scholar 

  31. 31.

    Williams, A. L. et al. Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico. Nature 506, 97–101 (2014).

    CAS  Article  Google Scholar 

  32. 32.

    Estrada, K. et al. Association of a low-frequency variant in HNF1A with type 2 diabetes in a Latino population. JAMA 311, 2305–2314 (2014).

    Article  Google Scholar 

  33. 33.

    Haiman, C. A. et al. Genome-wide association study of prostate cancer in men of African ancestry identifies a susceptibility locus at 17q21. Nat. Genet. 43, 570–573 (2011).

    CAS  Article  Google Scholar 

  34. 34.

    Genovese, G. et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329, 841–845 (2010).

    CAS  Article  Google Scholar 

  35. 35.

    Liu, J. Z. et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet. 47, 979–986 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    Carlson, C. S. et al. Generalization and dilution of association results from European GWAS in populations of non-European ancestry: the PAGE study. PLoS Biol. 11, e1001661 (2013).

    CAS  Article  Google Scholar 

  37. 37.

    Easton, D. F. et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447, 1087–1093 (2007).

    CAS  Article  Google Scholar 

  38. 38.

    DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium. et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat. Genet. 46, 234–244 (2014).

    Article  Google Scholar 

  39. 39.

    Waters, K. M. et al. Consistent association of type 2 diabetes risk variants found in europeans in diverse racial and ethnic groups. PLoS Genet. 6, e1001078–e1001079 (2010).

    Article  Google Scholar 

  40. 40.

    Lam, M. et al. Comparative genetic architectures of schizophrenia in East Asian and European populations. Preprint at (2018).

  41. 41.

    McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).

    CAS  Article  Google Scholar 

  42. 42.

    Huang, H. et al. Fine-mapping inflammatory bowel disease loci to single-variant resolution. Nature 547, 173–178 (2017).

    CAS  Article  Google Scholar 

  43. 43.

    Sohail, M. et al. Signals of polygenic adaptation on height have been overestimated due to uncorrected population structure in genome-wide association studies. Preprint at (2018).

  44. 44.

    Berg, J. J. et al. Reduced signal for polygenic adaptation of height in UK Biobank. Preprint at (2018).

  45. 45.

    Kerminen, S. et al. Geographic variation and bias in polygenic scores of complex diseases and traits in Finland. Preprint at (2018).

  46. 46.

    Novembre, J. & Barton, N. H. Tread lightly interpreting polygenic tests of selection. Genetics 208, 1351–1355 (2018).

    Article  Google Scholar 

  47. 47.

    Henn, B. M., Botigué, L. R., Bustamante, C. D., Clark, A. G. & Gravel, S. Estimating the mutation load in human genomes. Nat. Rev. Genet. 16, 333–343 (2015).

    CAS  Article  Google Scholar 

  48. 48.

    Brown, B. C., Asian Genetic Epidemiology Network Type 2 Diabetes Consortium, Ye, C. J., Price, A. L. & Zaitlen, N. Transethnic genetic-correlation estimates from summary statistics. Am. J. Hum. Genet. 99, 76–88 (2016).

    CAS  Article  Google Scholar 

  49. 49.

    Galinsky, K. J. et al. Estimating cross-population genetic correlations of causal effect sizes. Genet. Epidemiol. 43, 180–188 (2019).

    Article  Google Scholar 

  50. 50.

    Li, D., Zhao, H. & Gelernter, J. Strong protective effect of the aldehyde dehydrogenase gene (ALDH2) 504lys (*2) allele against alcoholism and alcohol-induced medical diseases in Asians. Hum. Genet. 131, 725–737 (2012).

    CAS  Article  Google Scholar 

  51. 51.

    Zhu, Z. et al. Dominance genetic variation contributes little to the missing heritability for human complex traits. Am. J. Hum. Genet. 96, 377–385 (2015).

    CAS  Article  Google Scholar 

  52. 52.

    Paré, G., Mao, S. & Deng, W. Q. A machine-learning heuristic to improve gene score prediction of polygenic traits. Sci. Rep. 7, 12665 (2017).

    Article  Google Scholar 

  53. 53.

    Martin, A. R. et al. An unexpectedly complex architecture for skin pigmentation in Africans. Cell 171, 1340–1353.e14 (2017).

    CAS  Article  Google Scholar 

  54. 54.

    Duncan, L. E. et al. Largest GWAS of PTSD (N=20 070) yields genetic overlap with schizophrenia and sex differences in heritability. Mol. Psychiatry 23, 666–673 (2018).

    CAS  Article  Google Scholar 

  55. 55.

    H3Africa Consortium. et al. Enabling the genomic revolution in Africa. Science 344, 1346–1348 (2014).

    Article  Google Scholar 

  56. 56.

    Hindorff, L. A. et al. Prioritizing diversity in human genomics research. Nat. Rev. Genet. 19, 175–185 (2018).

    CAS  Article  Google Scholar 

  57. 57.

    Kanai, M. et al. Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases. Nat. Genet. 50, 390–400 (2018).

    CAS  Article  Google Scholar 

  58. 58.

    Howrigan, D. Details and Considerations of the UK Biobank GWAS. (accessed 9 November 2017)

  59. 59.

    Fry, A. et al. Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. Am. J. Epidemiol. 186, 1026–1034 (2017).

    Article  Google Scholar 

  60. 60.

    Liu, S. et al. Genomic analyses from non-invasive prenatal testing reveal genetic associations, patterns of viral infections, and Chinese population history. Cell 175, 347–359.e14 (2018).

    CAS  Article  Google Scholar 

  61. 61.

    Wray, N. R. et al. Pitfalls of predicting complex traits from SNPs. Nat. Rev. Genet. 14, 507–515 (2013).

    CAS  Article  Google Scholar 

  62. 62.

    Wray, N. R. et al. Research review: polygenic methods and their application to psychiatric traits. J. Child Psychol. Psychiatry 55, 1068–1087 (2014).

    Article  Google Scholar 

  63. 63.

    Torkamani, A., Wineinger, N. E. & Topol, E. J. The personal and clinical utility of polygenic risk scores. Nat. Rev. Genet. 19, 581–590 (2018).

    CAS  Article  Google Scholar 

  64. 64.

    Manrai, A. K., Patel, C. J. & Ioannidis, J. P. A. In the era of precision medicine and big data, who is normal? JAMA 319, 1981–1982 (2018).

    Article  Google Scholar 

  65. 65.

    Plenge, R. M., Scolnick, E. M. & Altshuler, D. Validating therapeutic targets through human genetics. Nat. Rev. Drug Discov. 12, 581–594 (2013).

    CAS  Article  Google Scholar 

  66. 66.

    Carroll, M. D., Kit, B. K., Lacher, D. A., Shero, S. T. & Mussolino, M. E. Trends in lipids and lipoproteins in US adults, 1988–2010. JAMA 308, 1545–1554 (2012).

    CAS  Article  Google Scholar 

  67. 67.

    Rappoport, N. et al. Comparing ethnicity-specific reference intervals for clinical laboratory tests from EHR data. J. Appl. Lab. Med. 3, 366–377 (2018).

    Article  Google Scholar 

  68. 68.

    Lim, E., Miyamura, J. & Chen, J. J. Racial/ethnic-specific reference intervals for common laboratory tests: a comparison among Asians, Blacks, Hispanics, and White. Hawaii J. Med. Public Health 74, 302–310 (2015).

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Hero, J. O., Zaslavsky, A. M. & Blendon, R. J. The United States leads other nations in differences by income in perceptions of health and health care. Health Aff. (Millwood) 36, 1032–1040 (2017).

    Article  Google Scholar 

  70. 70.

    Williams, D. R., Priest, N. & Anderson, N. B. Understanding associations among race, socioeconomic status, and health: Patterns and prospects. Health Psychol. 35, 407–411 (2016).

    Article  Google Scholar 

  71. 71.

    Gilly, A. et al. Very low depth whole genome sequencing in complex trait association studies. Bioinformatics (2018).

    Article  Google Scholar 

  72. 72.

    Pasaniuc, B. et al. Extremely low-coverage sequencing and imputation increases power for genome-wide association studies. Nat. Genet. 44, 631–635 (2012).

    CAS  Article  Google Scholar 

  73. 73.

    Martin, A. R., Teferra, S., Möller, M., Hoal, E. G. & Daly, M. J. The critical needs and challenges for genetic architecture studies in Africa. Curr. Opin. Genet. Dev. 53, 113–120 (2018).

    CAS  Article  Google Scholar 

  74. 74.

    Coles, E. & Mensah, G. A. Geography of genetics and genomics research funding in Africa. Glob. Heart 12, 173–176 (2017).

    Article  Google Scholar 

  75. 75.

    Mulder, N. J. et al. Development of bioinformatics infrastructure for genomics research. Glob. Heart 12, 91–98 (2017).

    Article  Google Scholar 

  76. 76.

    MacArthur, J. et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 45, D896–D901 (2017).

    CAS  Article  Google Scholar 

Download references


We thank A. Khera for helpful discussions. We also thank M. Kubo, Y. Murakami, M. Akiyama and K. Ishigaki for their support in the BBJ Project analysis. We are grateful to S. Gazal for help in calculating LD scores. This work was supported by funding from the National Institutes of Health (K99MH117229 to A.R.M.). UKBB analyses were conducted via application 31063. The BBJ Project was supported by the Tailor-Made Medical Treatment Program of the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) and the Japan Agency for Medical Research and Development (AMED). M.K. was supported by a Nakajima Foundation Fellowship and the Masason Foundation.

Author information




A.R.M. and M.J.D. conceived and designed the experiments. A.R.M. and M.K. performed statistical analysis. A.R.M. and M.K. analyzed the data. A.R.M., M.K., Y.K., Y.O., B.M.N. and M.J.D. contributed reagents/materials/analysis tools. A.R.M., M.K., B.M.N. and M.J.D. wrote the paper.

Corresponding author

Correspondence to Alicia R. Martin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note, Supplementary Tables 1–9 and Supplementary Figures 1–13

Reporting Summary

Supplementary Data Sets 1–3

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martin, A.R., Kanai, M., Kamatani, Y. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat Genet 51, 584–591 (2019).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing