Perspective | Published:

The importance of cohort studies in the post-GWAS era

Nature Geneticsvolume 50pages322328 (2018) | Download Citation

Abstract

The past decade has seen enormous success of wide-scale genetic studies in identifying genetic variants that modify individuals’ predisposition to common diseases. However, the interpretation and functional understanding of these variants lag far behind. In this Perspective, we discuss opportunities for using large-scale cohort studies to investigate the downstream molecular effects of SNPs at different ‘omics’ data levels. We point to the pivotal role of population cohorts in establishing causality and advancing drug discovery. In particular, we focus on the breadth-versus-depth concepts of population studies, on data harmonization, and on the challenges, ethical aspects and future perspectives of cohort studies.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Klein, R. J. et al. Complement factor H polymorphism in age-related macular degeneration. Science 308, 385–389 (2005).

  2. 2.

    Ozaki, K. et al. Functional SNPs in the lymphotoxin-α gene that are associated with susceptibility to myocardial infarction. Nat. Genet. 32, 650–654 (2002).

  3. 3.

    Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 42, D1001–D1006 (2014).

  4. 4.

    Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506, 376–381 (2014).

  5. 5.

    Jostins, L. et al. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

  6. 6.

    Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).

  7. 7.

    Willer, C. J. et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45, 1274–1283 (2013).

  8. 8.

    Pickrell, J. K. et al. Detection and interpretation of shared genetic influences on 42 human traits. Nat. Genet. 48, 709–717 (2016).

  9. 9.

    Cortes, A. & Brown, M. A. Promise and pitfalls of the Immunochip. Arthritis Res. Ther. 13, 101 (2011).

  10. 10.

    Fritsche, L. G. et al. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat. Genet. 48, 134–143 (2016).

  11. 11.

    Chiang, C. et al. The impact of structural variation on human gene expression. Nat. Genet. 49, 692–699 (2017).

  12. 12.

    Visel, A. et al. Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice. Nature 464, 409–412 (2010).

  13. 13.

    Annotation of the non-coding genome. Nature  https://doi.org/10.1038/nature14309 (2015).

  14. 14.

    Locke, A. E. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–206 (2015).

  15. 15.

    Okbay, A. et al. Genome-wide association study identifies 74 loci associated with educational attainment. Nature 533, 539–542 (2016).

  16. 16.

    Li, Y. et al. A functional genomics approach to understand variation in cytokine production in humans. Cell 167, 1099–1110.e14 (2016).

  17. 17.

    Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

  18. 18.

    Scholtens, S. et al. Cohort profile: LifeLines, a three-generation cohort study and biobank. Int. J. Epidemiol. 44, 1172–1180 (2015).

  19. 19.

    Tigchelaar, E. F. et al. Cohort profile: LifeLines DEEP, a prospective, general population cohort study in the northern Netherlands: study design and baseline characteristics. BMJ Open 5, e006772 (2015).

  20. 20.

    Battle, A., Brown, C. D., Engelhardt, B. E. & Montgomery, S. B. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).

  21. 21.

    Mahmood, S. S., Levy, D., Vasan, R. S. & Wang, T. J. The Framingham Heart Study and the epidemiology of cardiovascular disease: a historical perspective. Lancet 383, 999–1008 (2014).

  22. 22.

    Splansky, G. L. et al. The Third Generation Cohort of the National Heart, Lung, and Blood Institute’s Framingham Heart Study: design, recruitment, and initial examination. Am. J. Epidemiol. 165, 1328–1335 (2007).

  23. 23.

    Folkersen, L. et al. Mapping of 79 loci for 83 plasma protein biomarkers in cardiovascular disease. PLoS Genet. 13, e1006706 (2017).

  24. 24.

    Yao, C. et al. Genome-wide association study of plasma proteins identifies putatively causal genes, proteins, and pathways for cardiovascular disease. Preprint at https://www.biorxiv.org/content/early/2017/05/12/136523/ (2017).

  25. 25.

    Rosenquist, J. N. et al. Cohort of birth modifies the association between FTO genotype and BMI. Proc. Natl. Acad. Sci. USA 112, 354–359 (2015).

  26. 26.

    Moayyeri, A., Hammond, C. J., Hart, D. J. & Spector, T. D. The UK Adult Twin Registry (TwinsUK Resource). Twin Res. Hum. Genet. 16, 144–149 (2013).

  27. 27.

    Power, C. & Elliott, J. Cohort profile: 1958 British birth cohort (National Child Development Study). Int. J. Epidemiol 35, 34–41 (2006).

  28. 28.

    Holle, R., Happich, M., Löwel, H. & Wichmann, H. E. KORA: a research platform for population based health research. Gesundheitswesen 67 (Suppl. 1), S19–S25 (2005). 

  29. 29.

    Völzke, H. et al. Cohort profile: the study of health in Pomerania. Int. J. Epidemiol. 40, 294–307 (2011).

  30. 30.

    Pilia, G. et al. Heritability of cardiovascular and personality traits in 6,148 Sardinians. PLoS Genet. 2, e132 (2006).

  31. 31.

    Sabatti, C. et al. Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nat. Genet. 41, 35–46 (2009).

  32. 32.

    Würtz, P. et al. Metabolic signatures of adiposity in young adults: Mendelian randomization analysis and effects of weight change. PLoS Med. 11, e1001765 (2014).

  33. 33.

    Colditz, G. A., Philpott, S. E. & Hankinson, S. E. The impact of the Nurses’ Health Study on population health: prevention, translation, and control. Am. J. Public Health 106, 1540–1545 (2016).

  34. 34.

    Netea, M. G. et al. Understanding human immune function using the resources from the Human Functional Genomics Project. Nat. Med. 22, 831–833 (2016).

  35. 35.

    Zhernakova, D. V. et al. Identification of context-dependent expression quantitative trait loci in whole blood. Nat. Genet. 49, 139–145 (2017).

  36. 36.

    Bonder, M. J. et al. Disease variants alter transcription factor levels and methylation of their binding sites. Nat. Genet. 49, 131–138 (2017).

  37. 37.

    Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569 (2016).

  38. 38.

    Blanchet, L. et al. Factors that influence the volatile organic compound content in human breath. J. Breath Res. 11, 016013 (2017).

  39. 39.

    Aguirre-Gamboa, R. et al. Differential effects of environmental and genetic Factors on T and B cell immune traits. Cell Rep. 17, 2474–2487 (2016).

  40. 40.

    Ter Horst, R. et al. Host and environmental factors influencing individual human cytokine responses. Cell 167, 1111–1124.e13 (2016).

  41. 41.

    Schirmer, M. et al. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 167, 1897 (2016).

  42. 42.

    Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016).

  43. 43.

    Vandeputte, D. et al. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut 65, 57–62 (2015).

  44. 44.

    Tigchelaar, E. F. et al. Gut microbiota composition associated with stool consistency. Gut 65, 540–542 (2016).

  45. 45.

    Imhann, F. et al. Proton pump inhibitors affect the gut microbiome. Gut 65, 740–748 (2016).

  46. 46.

    Imhann, F. et al. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut 67, 108–119 (2016).

  47. 47.

    Westra, H.-J. et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 45, 1238–1243 (2013).

  48. 48.

    Bonder, M. J. et al. The effect of host genetics on the gut microbiome. Nat. Genet. 48, 1407–1412 (2016).

  49. 49.

    Goodrich, J. K. et al. Genetic determinants of the gut microbiome in UK Twins. Cell Host Microbe 19, 731–743 (2016).

  50. 50.

    He, T. et al. Effects of yogurt and bifidobacteria supplementation on the colonic microbiota in lactose-intolerant subjects. J. Appl. Microbiol. 104, 595–604 (2007).

  51. 51.

    Romero, J. R. & Wolf, P. A. Epidemiology of stroke: legacy of the Framingham Heart Study. Glob. Heart 8, 67–75 (2013).

  52. 52.

    Gudbjartsson, D. F. et al. Large-scale whole-genome sequencing of the Icelandic population. Nat. Genet. 47, 435–444 (2015).

  53. 53.

    GTEx Consortium. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).

  54. 54.

    Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

  55. 55.

    Graham, J. W. Missing data analysis: making it work in the real world. Annu. Rev. Psychol. 60, 549–576 (2009).

  56. 56.

    Wang, C., Butts, C. T., Hipp, J. R., Jose, R. & Lakon, C. M. Multiple imputation for missing edge data: a predictive evaluation method with application to add health. Soc. Networks 45, 89–98 (2016).

  57. 57.

    Howie, B., Fuchsberger, C., Stephens, M., Marchini, J. & Abecasis, G. R. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat. Genet. 44, 955–959 (2012).

  58. 58.

    Fehrmann, R. S. N. et al. Gene expression analysis identifies global gene dosage sensitivity in cancer. Nat. Genet. 47, 115–125 (2015).

  59. 59.

    Brandsma, M. et al. How to kickstart a national biobanking infrastructure: experiences and prospects of BBMRI-NL. Nor. Epidemiol. 21, 143–148 (2012).

  60. 60.

    van Leeuwen, E. M. et al. Genome of the Netherlands population-specific imputations identify an ABCA6 variant associated with cholesterol levels. Nat. Commun. 6, 6065 (2015).

  61. 61.

    Sperber, A. D. et al. The global prevalence of IBS in adults remains elusive due to the heterogeneity of studies: a Rome Foundation working team literature review. Gut 66, 1075–1082 (2017).

  62. 62.

    Savage, N. The measure of a man. Cell 169, 1159–1161 (2017).

  63. 63.

    Wallace, S. E., Walker, N. M. & Elliott, J. Returning findings within longitudinal cohort studies: the 1958 birth cohort as an exemplar. Emerg. Themes Epidemiol. 11, 10 (2014).

  64. 64.

    Tian, C. et al. Genome-wide association and HLA region fine-mapping studies identify susceptibility loci for multiple common infections. Nat. Commun. 8, 599 (2017).

  65. 65.

    Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094 (2015).

Download references

Acknowledgements

C.W. is funded by a European Research Council (ERC) advanced grant (FP/2007-2013/ERC grant 2012-322698), a Netherlands Organization for Scientific Research (NWO) Spinoza prize (NWO SPI 92-266), the NWO Gravitation Netherlands Organ-on-Chip Initiative (024.003.001), the Stiftelsen Kristian Gerhard Jebsen foundation (Norway) and the RuG investment agenda grant Personalized Health. A.Z. is supported by a Rosalind Franklin Fellowship (University of Groningen), an ERC starting grant (715772) and an NWO VIDI grant (2016-178.056), and is also funded by CardioVasculair Onderzoek Nederland (CVON 2012-03). We thank K. Mc Intyre and J. Senior for editorial assistance, and J. Fu for help with graphics for Fig. 1.

Author information

Affiliations

  1. Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands

    • Cisca Wijmenga
    •  & Alexandra Zhernakova
  2. K.G. Jebsen Coeliac Disease Research Centre, Department of Immunology, University of Oslo, Oslo, Norway

    • Cisca Wijmenga

Authors

  1. Search for Cisca Wijmenga in:

  2. Search for Alexandra Zhernakova in:

Contributions

C.W. and A.Z. jointly conceived and wrote the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Cisca Wijmenga or Alexandra Zhernakova.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41588-018-0066-3