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Simultaneous single-cell analysis of  
5mC and 5hmC with SIMPLE-seq
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Dynamic 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) 
modifications to DNA regulate gene expression in a cell-type-specific 
manner and are associated with various biological processes, but the two 
modalities have not yet been measured simultaneously from the same 
genome at the single-cell level. Here we present SIMPLE-seq, a scalable, 
base resolution method for joint analysis of 5mC and 5hmC from thousands 
of single cells. Based on orthogonal labeling and recording of ‘C-to-T’ 
mutational signals from 5mC and 5hmC sites, SIMPLE-seq detects these two 
modifications from the same molecules in single cells and enables unbiased 
DNA methylation dynamics analysis of heterogeneous biological samples. 
We applied this method to mouse embryonic stem cells, human peripheral 
blood mononuclear cells and mouse brain to give joint epigenome maps at 
single-cell and single-molecule resolution. Integrated analysis of these two 
cytosine modifications reveals distinct epigenetic patterns associated with 
divergent regulatory programs in different cell types as well as cell states.

Dynamic chemical modifications to the genome, including histone tails 
and DNA bases, regulate gene expression by facilitating or inhibiting 
the binding of transcriptional factors to them1,2. DNA 5-methylcytosine 
(5mC) is a major epigenetic modification that can be deposited or elimi-
nated in a cell-type-specific manner, driven by DNA methyltransferases 
and replication-dependent or replication-independent demethylation 
processes3. The replication-independent active DNA demethylation is 
mediated by Ten-Eleven Translocation (TET) family proteins, gener-
ating 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 
5-carboxylcytosine (5caC) sequentially, followed by base excision repair 
of the latter two forms to reinstall unmodified cytosines4. Both 5mC and 
5hmC are shown to regulate diverse biological processes, including stem 
cell pluripotency, development, aging and tumorigenesis, in mammals5–8.

Various molecular assays, including DNase-seq/ATAC-seq9,10, 
ChIP-seq11 and Bisulfite-seq12, were developed to identify the location 

and states of regulatory elements in many cell types and species13. 
Recent methods developed in single-cell genomics have revolutionized 
the study of gene regulatory networks by accessing gene expression14–16, 
chromatin high-order organizations17, chromatin accessibilities18–21, his-
tone modifications22–29 and DNA base modifications30–34, one modality 
at a time or together35–40, at single-cell resolution from complex biologi-
cal systems. In particular, pioneering single-cell methylome analyses 
have revealed the heterogeneity and cell-type-specific patterns of 
5mC in different cellular environments30,34,41–44. However, the bisulfite 
treatment-dependent methods did not resolve 5hmC from 5mC31, 
obscuring the functional interpretation of their individual roles from 
the mixed outputs. Using the glucosylated 5hmC (5ghmC)-dependent 
restriction endonuclease AbaSI, methods were recently developed 
to map 5hmC in single cells31,45. Combining chemical and enzymatic 
approaches enabled discrimination between 5hmC and 5mC at 
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reduction to DHU55, to give the second ‘C-to-T’ signal for the 5mC site in 
the same molecule; the unmodified cytosine and other bases remained 
unchanged (Extended Data Fig. 1b). In addition, we observed low back-
ground conversion rates from high-throughput sequencing results of 
spike-in lambda DNA sequencing library (0.06% (from 0.04% to 0.08%, 
at 95% interval) for 5hmC treatment-derived reads and 0.57% (from 
0.49% to 0.65%, at 95% interval) for 5mC treatment-derived reads)—
measured from ‘C-to-T’ mutation of all unmodified Cs on the model 
DNA sequences, T1M (Extended Data Fig. 1f–h). These results suggest 
that the two labeling strategies can be integrated with our sequential 
recording approach for specific 5hmC and 5mC detection.

Another major challenge is to decode the two modalities jointly 
from thousands of single cells. Because both TAPS43 and hmC-CATCH43 
read out cytosine modifications via ‘C-to-T’ mutations, their signals 
must be deduced from the recording products of the same DNA tem-
plates. Although resolving the two signals in one single cell could be 
relatively straightforward, obtaining such information from thousands 
of single cells is very challenging but is required for understanding 
methylation dynamics in complex biological systems. We designed 
a primer pre-deposited with a 5caC base to record 5hmC signals in 
the extension products; the 5caC base will be converted to a ‘T’ signal 
during the subsequent 5mC reaction, and this signal will be used to 
distinguish amplification products derived from the two modalities 
(Fig. 1a). Therefore, in the SIMPLE-seq procedure, cells were first fixed 
with formaldehyde and permeabilized, followed by nucleosome deple-
tion via weak SDS treatment to allow unbiased capture of the genome43 
(Fig. 1a and Extended Data Fig. 1i,j). To reduce the potential barcode 
collision, a brief sonication was carried out to prevent nuclei clumping 
(Extended Data Fig. 1i). Next, Tn5 tagmentation reaction was carried 
out to attach an adaptor to genome DNA, followed by nuclei barcoding 
with a ligation-based combinatorial indexing strategy60. To increase 
genomic coverage, we benchmarked multiple enzyme concentrations 
and buffer conditions (Extended Data Fig. 1k). The nuclei were then 
lysed, and genomic DNA was purified, followed by sequential chemical 
labeling (Fig. 1a). After sequencing, the cellular barcodes ligated to DNA 
fragments were used to assign each read to individual cells, combined 
with the 5caC signal pre-deposited on the primer to deduce 5mC and 
5hmC at single-base resolution for each cell (Fig. 1a and Methods). We 
also minimized the purification and transferring steps during the whole 
procedure to reduce the risk of material loss (Methods).

Joint analysis of 5mC and 5hmC from single cells
In the SIMPLE-seq procedure, the first round of nuclei barcoding by 
tagmentation was used as a sample multiplexing barcode (to label 
cells from different conditions) for a single experiment (Fig. 1a and 
Methods). The C-to-T mutation rates for 5mC and 5hmC are estimated 
as 86.9% and 85.6% from spiked-in model double-stranded DNA (dsDNA) 
containing 5mC or 5hmC sites, suggesting a reasonably high sensitivity 
for identifying modified cytosines. Notably, both modifications from 
the same molecule can be efficiently detected (T1M, T2H and T3MH; 
Supplementary Table 1 and Extended Data Fig. 1h). To normalize the 
detected base modification levels, we performed oligonucleotide mix-
ing experiments by mixing modified and unmodified DNA oligos at 
different ratios to establish the standard curves to offset the observed 
C-to-T conversion efficiencies (T4C, T4M and T4H; Supplementary 
Table 1 and Extended Data Fig. 1l–n). In addition, SIMPLE-seq detects 
5mC and 5hmC based on the positive mutational signals instead of 
negatively selecting the unconverted Cs as in bisulfite-based meth-
ods, showing high selectivity for both 5mC and 5hmC (Extended Data  
Fig. 1b,h,o). The species-mixing experiment suggested an expected 
barcode collision rate of approximately 5.1%, and the fraction of reads 
mapped to human and mouse genomes are highly concordant between 
5mC and 5hmC modalities, suggesting successful recording of both 
5mC and 5hmC status for the same single cells (Fig. 1b and Extended 
Data Fig. 1p,q).

single-base resolution, starting to provide insights into the distribu-
tion patterns and biological functions of 5hmC46–53 as well as hinting the 
potential significance of its relationships with other epigenetic layers, 
particularly 5mC. However, measuring these two modifications one 
at a time can capture only the averaged outcome from different cell 
populations while potential heterogeneous relationships, such as the 
DNA methylation equilibrium contributed by generation of both 5mC 
and 5hmC in dynamic cellular systems, may be lost. In line with this 
notion, the ‘six-letter seq’ method was developed to probe 5mC and 
5hmC simultaneously from cell-free DNA or genome DNA molecules 
isolated from bulk cell populations54. However, dissecting the relation-
ships and combined functional effects of 5mC and 5hmC in different 
cell types from complex systems, such as development and diseases, 
requires measuring them at single-cell resolution.

A major challenge for single-cell joint profiling of 5mC and 5hmC 
is to orthogonally record the two modalities from the same DNA mol-
ecule. To address this, the DNA template should be minimally dis-
rupted; hence, recently developed bisulfite-free chemical labeling 
approaches—for instance, TET-assisted pyridine borane sequencing 
(TAPS) and chemical-assisted C-to-T conversion of 5hmC sequencing 
(hmC-CATCH)—that are mild and specific for 5mC or 5hmC provide a 
potential opportunity47,55 (Extended Data Fig. 1a). However, the two 
approaches in their current form do not allow orthogonal recording 
of the two modifications and are, thus, not directly compatible with 
each other: blocking the 5hmC modality in TAPS43, which ensures 
the specificity of 5mC detection, will incapacitate 5hmC for further 
labeling and detection.

Here we present SIMPLE-seq (simultaneous profiling of epigenetic 
cytosine modifications by sequencing) for joint analysis of 5mC and 
5hmC at single-cell and single-base resolution. Based on a combination 
of bisulfite-free chemical labeling reactions47,55, SIMPLE-seq intro-
duces the ‘C-to-T’ mutation signals for 5mC and 5hmC sequentially 
and detects the locations and types of the modifications from the 
same DNA molecule in single cells. We applied SIMPLE-seq to mouse 
embryonic stem cells (mESCs), human peripheral blood mononuclear 
cells (PBMCs) and mouse brain samples. Integrated analysis of the 
joint 5mC and 5hmC maps at single-cell and single-molecule levels 
revealed divergent epigenetic programs for different cell states and 
regulatory elements.

Results
Overview of SIMPLE-seq
We proposed a strategy to sequentially label and record the two 
modalities from the same DNA molecule (Fig. 1a). Considering that 
the average abundance of 5hmC is approximately 10% or less of 5mC56 
and the specificity of the two labeling approaches, it is optimal to per-
form 5hmC labeling before the 5mC reaction for high specificity. We 
also introduced a primer extension step right after 5hmC labeling to 
record its signals. After 5mC labeling reactions, both 5hmC-derived and 
5mC-derived signals can be amplified from the same reaction mixture 
for sequencing. We first performed a proof-of-concept experiment on a 
synthesized model oligonucleotide containing single 5mCG and 5hmCG 
sites (T5MH; Supplementary Table 1 and Extended Data Fig. 1b,c) by 
Sanger sequencing. After ruthenate (VI) oxidation of 5hmC to 5fC47,57 
and indanedione labeling of the newly generated 5fC32,58, a ‘C-to-T’ signal 
is specifically generated at the 5hmC site after polymerase chain reac-
tion (PCR) amplification but not at C or 5mC sites (Extended Data Fig. 
1b). Both the labeling reactions are mild, without notable degradation 
(Extended Data Fig. 1d,e). The endogenous 5fC (0.24–1.52% of 5hmC) 
derived from 5hmC oxidation by TET enzymes59 will also be labeled; 
but, considering its sparsity, we do not expect 5fC to significantly inter-
fere with 5hmC analysis. Primer extension was introduced to record 
the ‘5hmC-to-T’ on the newly synthesized complementary strand to 
the original template. Next, TET-mediated oxidation was carried out 
to convert 5mC on the original template to 5caC, followed by borane 
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We carried out the SIMPLE-seq experiment on mouse embryonic 
stem cells (mESCs) cultured in two different states—2i-cultured mESCs 
and serum-cultured mESCs—and sequenced approximately 1,500 
mESCs (~6.7% of the nuclei recovered from one SIMPLE-seq experi-
ment) to moderate depth (average PCR duplicate rate: 19.6%) and recov-
ered 1,095 cells after filtering out cells with low sequencing coverage. 
SIMPLE-seq datasets showed high mapping rates: an average of 93.0% 
of reads in each cell can be mapped to the reference mouse genome 
(GRCm38.p6); among them, 94.6% can be assigned to 5mC (68.4%) 
and 5hmC (26.2%) labeling-derived reads, respectively (Extended Data  
Fig. 1r,s). For the 5mC modality, we recovered a median number of 
313,261 unique mapped reads per cell with an average genomic cover-
age of 1.96% (from 0.97% to 3.56%, at 95% interval), corresponding to 
1.78-fold of coverage with only approximately 1/5 of sequencing depth 
compared to the previous sci-MET method43 (average sequenced reads 
per cell: 438,591 for SIMPLE-seq and 2,485,858 for sci-MET; Fig. 1c, 
Extended Data Fig. 1t and Supplementary Table 2). For the 5hmC modal-
ity, we recovered a median number of 150,372 unique mapped reads per 
cell, corresponding to 0.79% average genomic coverage for single cells 
(from 0.38% to 1.43%, at 95% interval; Fig. 1c, Extended Data Fig. 1u and 

Supplementary Table 2). We calculated the molecular complexities of 
SIMPLE-seq libraries and predicted that the single-cell genomic cover-
age of 5% could be obtained by sequencing to 1.5 million reads per-cell 
depth (10.2% if sequenced to saturation)61. Compared to scBS-seq41, 
scRRBS30 and scAba-seq31, SIMPLE-seq recovers similar or higher num-
bers of CG sites per cell at the same sequencing depth (Extended Data 
Fig. 1v,w). Aggregated signal of SIMPLE-seq datasets shows reasonably 
well agreement on the genome-wide modification levels of 5mC and 
5hmC with published whole-genome bisulfite sequencing (WGBS) and 
Tet-assisted bisulfite sequencing (TAB-seq) datasets from the same 
cell line (Fig. 1d and Extended Data Fig. 2a–d)46,55. In total, we identified 
19,968,022 5mCG sites from 184.9 million reads and 1,057,466 5hmC 
sites from 68.3 million reads of the 2i-cultured mESCs, and, among 
them, 622,323 were shared (Extended Data Fig. 2e,f). Compared to 
the 5mC–5hmC shared sites, the 5hmC-only sites are more enriched in 
regulatory elements, including active and poised enhancers and active 
promoters associated with the H3K4me3 histone mark (Extended Data 
Fig. 2g,h).

We then summarized the 5mC and 5hmC modification levels in 
100 kilobase (kb) size non-overlapping bins, followed by dimensional 
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Fig. 1 | Base resolution, joint analysis of 5mC and 5hmC in single cells. 
a, Schematics of SIMPLE-seq. Tn5 tagmentation reaction is carried out on 
crosslinked and nucleosome-depleted nuclei, followed by nuclei barcoding via 
combinatorial indexing. The nuclei were then lysed, and the barcoded genomic 
DNA was extracted, followed by sequential chemical labeling and recording 
of labeled products. The 5mC and 5hmC sites in single cells can be identified 
at base resolution from the ‘C-to-T’ signal after sequencing. b, Scatter plot 
showing the number of reads mapped to human and mouse genome in each 
cell from the species-mixing experiment. c, Violin plots showing the number 
of unique reads per cell assigned to 5mC and 5hmC in human HEK293T and 
mESCs. Cell number n = 55 (HEK293) and n = 138 (mESC). Data are presented as 
485,854 ± 25,334 (HEK293T, 5mC), 339,706 ± 24,745 (mESC, 5mC), 188,233 ± 9,699 
(HEK293T, 5hmC) and 128,736 ± 9,250 (mESC, 5hmC) (mean ± s.e.m.). d, Scatter 
plots showing the genome-wide 5mCG and 5hmCG modification levels (in 25-kb 

non-overlapping bins) between 5mC and 5hmC profiles generated by different 
assays (5mC: WGBS and SIMPLE-seq; 5hmC: TAB-seq and SIMPLE-seq). Pearson’s 
correlations between different datasets are indicated in the boxes.  
e, UMAP embedding showing cells based on their 5hmCG levels (in 100-kb non-
overlapping bins). Each dot represents a single cell and is colored according to 
its original identity. f,g, Line plots showing the cumulated CG site coverages of 
different depths for 5mC (f) and 5hmC (g) from different numbers of single cells. 
The shadowed area shows the error ranges from five randomly sampled cell sets. 
h, Genome browser showing the CG modification levels at Sox4 (serum mESC 
highly expressed) and Tcl1 (2i mESC highly expressed) loci. The differentially 
(hydroxyl)methylated regions for the two genes are indicated with pink boxes.  
i, Line plots showing the 5mCG levels around genic regions of genes with different 
expression levels. RPKM, reads per kilobase per million mapped reads.
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reduction with principal component analysis (PCA) and visualization 
by uniform manifold approximation and projection (UMAP), which can 
clearly separate mESCs of the two different states (Fig. 1e, Extended 
Data Fig. 2i–m and Methods). SIMPLE-seq can analyze thousands of 
single cells in a single experiment, and high-coverage datasets can be 
recovered by aggregating signals from single cells in the same cluster: 
at the single CG site level, 80% of genomic coverage (no fewer than 
three reads) can be obtained from approximastely 100 cells (5mC) and 
approximately 250 cells (5hmC) (Fig. 1f,g); at 10-kb non-overlapping 
bins level, more than 95% of the mappable genomic regions can be 
recovered (from no fewer than three reads) by aggregating 20 and 40 
cells for 5mC and 5hmC, respectively (Extended Data Fig. 2n). Consist-
ent with previous observations62, our aggregated signal for the same 
cell groups showed a higher level of 5mC in serum-cultured mESCs com-
pared to mESCs in 2i, with a negative correlation between gene expres-
sions and 5mCG levels at the transcriptional start site (TSS) proximal 
regions and weakly positive correlations between gene expression and 
TSS-proximal 5hmCG levels in genes with higher expression levels (Fig. 1i  
and Extended Data Fig. 2o–q). These results support SIMPLE-seq as a 
scalable method that can simultaneously generate high-quality 5mC 
and 5hmC profiles from single cells.

DNA methylation and active demethylation dynamics in 
different mESC states
Extensive genome-wide de novo cytosine methylation and active DNA 
demethylation occur during the conversion of 2i state mESCs to cells 
maintained in serum conditions. To investigate the (hydroxyl)methylome 
dynamics during the 2i-to-serum mESC transition, we constructed the 
pseudotime trajectory based on the 5mCG status of single cells (Fig. 2a).  
It has been suggested that 5hmC offers a different platform upon which 
transcription factors may bind or 5mC-specific binding proteins may 
be excluded63,64. Thus, understanding the regulatory functions of these 
two modifications requires joint analysis of their levels on binding 
motifs of potential transcriptional factors (TFs). Based on high-quality 
5mC and 5hmC profiles from single cells, ChromVAR65 motif analy-
sis results revealed both concordant and disconcordant changes of 
enrichment levels of TF binding motifs on 5mC and 5hmC sites across 
the trajectory (Fig. 2b and Extended Data Fig. 3a). We also analyzed 
the expression level of TFs, assuming that the abundant TFs are likely 
functional. We classified TFs into different groups, depending on the 
relationship between TF gene expression levels and motif enrichment 
levels on 5mCG–5hmCG sites: group 1 and group 2 of TFs (27 and 23 out 
of 93) show concordant 5mC–5hmC dynamics and display negative and 
positive relationships, respectively, whereas group 3 and group 4 of TFs 
(28 and 15 out of 93) show disconcordant 5mC–5hmC dynamics and 
exhibit negative and positive relationships, respectively (Fig. 2b and 
Extended Data Fig. 3a). For example, in group 1, genomic regions con-
taining the Myc binding motifs showed both lower 5mCG and 5hmCG 
levels in cells cultured with serum condition compared to those with 
2i condition, and c-Myc has increased expression in serum-cultured 
mESCs66. Another example of group 1 is Hes1, which expresses higher in 
2i condition compared to serum condition and is known to delay embry-
onic stem differentiation to neural cells67. For disconcordant motifs, 
representative TFs from group 3 include: motifs recognized by lineage 
specifier Sox3 (neurogenesis)68 show high 5hmCG and low 5mCG levels 
in mESCs of serum conditions; on the other side, high 5mCG and low 
5hmCG level regions in serum conditions are enriched for motifs of 
self-renewal factor Klf4 (ref. 69) (Fig. 2b). Thus, we observed similar 
numbers of TFs from both concordant and disconcordant motif groups 
displaying positive or negative relationships with TF gene expression 
levels, suggesting distinct and complex impacts of 5mC and 5hmC on 
TF binding and the regulatory output.

Interestingly, we found that mESCs of these two states can be 
more distinctly separated from each other based on 5hmC than on 
5mC (Fig. 1e and Extended Data Fig. 2i–k,m); a previous study also 

showed that the 5hmC levels increased to reach the plateau faster dur-
ing the state transition as well as showed a clearer difference between 
the two states70. To explore why less homogeneous 5mCG states were 
observed during the mESC state transition, we grouped the cells into 
five groups according to the pseudotime (split into five equal portions 
according to pseudotime score ranks) and compared the 5mCG level 
changes from ‘early’ to ‘late’ pseudotime points by aggregating the 
single-cell signals. We found that, for the third group (‘midpoint’ when 
the cells connected the two cell populations, corresponding to the cell 
population with less similarity in 5mCG state to other serum-cultured 
cells after removal of 2i), the promoter of proliferation genes, such as 
Plk1 and Ctnnb1, showed increased methylation levels, and promoter 
of cell cycle repressor genes, such as Cdkn2a and Cdkn2c, showed a 
decreased methylation level, compared to the other cell groups (Fig. 2c 
and Extended Data Fig. 3b); thus, the snapshot of such an intermediate 
cell state could represent a possible delayed cell cycle or senescence 
state during mESC state transition.

The stark heterogeneity differences of 5mCG and 5hmCG across 
cells prompted us to analyze the 5mCG–5hmCG relationships in single 
cells. To quantify the 5mC–5hmC relationship at the cell level, we cal-
culated the cytosine modification entropy (or modification entropy) 
for each single cell from the percentages of its 5hmCGs with different 
neighboring 5mCG and 5hmCG numbers (surrounded by only 5hmCGs, 
by only 5mCGs, by both 5mCGs and 5hmCGs and without surround-
ing 5mCG/5hmCG). Cells with complex 5mCG–5hmCG distribution 
relationships tend to have high modification entropy values and vice 
versa (Fig. 2d and Methods). Interestingly, we found that the cells 
resembling the intermediate state between 2i and serum mESC popula-
tions showed higher modification entropy values compared to other 
cells (Fig. 2e and Extended Data Fig. 3c). The increased 5hmCG–5mCG 
complexity could be explained by ongoing active DNA demethyla-
tion and re-methylation that did not yet reach the static states, and, 
thus, the modification entropy could be used to identify the transient 
reprogramming events by identifying the ‘intermediate’ cells that may 
be missed from single-modality analyses.

A type of 5mC-associated 5hmC site is correlated with active 
chromatin state
5hmC sites are generated by oxidation of 5mC by TET enzymes71, which 
could be either intermediate products of active DNA demethylation 
or stable epigenetic modifications with regulatory function. Previ-
ous knowledge suggests that TET-mediated demethylation exhibits 
different degrees of processivities: TET enzymes may oxidize all 5mC 
sites within a range of the genome or selectively target individual loci4. 
However, whether 5hmC generated from these two different modes is 
present during 2i-to-serum transition and, if yes, may have different 
roles remained unclear. To this end, we performed the CG site-level 
analysis of 5mC–5hmC relationships. We used the sequenced genomic 
fragments with both 5mC and 5hmC modality captured. Under mod-
erate sequencing depth, an average of 12.3% of 5hmC reads in each 
cell have the paired 5mC modality of the same loci captured, which 
recovered 17.9% of all detected 5hmCG sites (190,276 sites covered by 
at least five cells) (Extended Data Fig. 3d,e). Among them, we identi-
fied 27.6% of 5hmCG sites that co-exist with 5mCG in the same regions 
(type 2, 5mCG-associated 5hmCG sites); for the rest of 5hmCG sites, 
we did not detect such 5mC–5hmC relationship in single cells (type 1, 
basal level) (Fig. 2f, Supplementary Table 3 and Methods). Consistent 
with the previous observation62, 5hmCG levels (of both types 1 and 
2) are generally higher in serum-cultured mESCs than in 2i-cultured 
cells. Interestingly, the modification levels of type 2 5hmCG sites first 
increased but then dropped during the 2i-to-serum transition, with 
the highest levels in the intermediate cells connecting the two distinct 
populations. Such distinct patterns suggest potential differential roles 
of two 5hmCG types associated with the two modes of TET processivi-
ties (Fig. 2f and Extended Data Fig. 3f).
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To further understand the two 5hmCG types, we compared the 
genomic distributions of 5mCG-associated 5hmCG sites (type 2) with 
the rest of the sites (type 1): both types of 5hmCG sites are enriched in 
TSS-proximal and genic regions, in which type 2 sites are particularly 
enriched for exons and transcriptional termination sites (TTSs) (Fig. 2g).  
Genomic Regions Enrichment of Annotations Tool (GREAT)72 analy-
sis shows that type 2 5hmCG sites are enriched for developmental 

processes of diverse lineages, suggesting that active demethylation of 
these 5hmC sites may be associated with mESC priming for differen-
tiation (Extended Data Fig. 3g). We then performed TF binding motif 
enrichment analysis for 5hmCG sites, and both shared and differential 
motifs were identified for the two 5hmCG types (Fig. 2h,i). For example, 
the binding motif of pluripotency factor c-Myc is enriched for both 
type 1 and type 2 5hmCG, whereas motifs for Sox2 and CTCF are more 
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Fig. 2 | Analysis of 5mC and 5hmC from the same molecules revealed multiple 
5hmC types associated with active chromatin. a, UMAP showing the single-cell 
trajectory of 2i-cultured mESCs to serum-cultured mESC transition. Each dot 
represents a single cell and is colored according to its assigned pseudotime 
score. b, Heat maps showing the 5mCG and 5hmCG TF motif enrichments and TF 
gene expression during mESC 2i to serum state transition. c, Genome browser 
view showing the 5mCG levels at promoters of proliferation gene Plk1 and cell 
cycle repressor gene Cdkn2a from cells of different pseudotime groups. d, The 
distribution of 5hmCG sites with different 5hmCG–5mCG relationships can be 
quantified by cytosine modification entropy, and the cells with more unified 
5hmCG states have lower modification entropy and vice versa. e, Violin plots 
showing the 5hmCG state entropies of cells in different pseudotime groups.  

P value, Kolmogorov–Smirnov test. f, Schematics showing the classification of 
5hmCG sites: 5hmCG sites with neighboring 5mCG sites in a significant fraction 
of cells are grouped as type 2 sites. Average modification levels of two types of 
5hmCG sites in single cells. Each dot represents a single cell and is colored and 
ordered according to its pseudotime score. P value, two-sided Wilcoxon test of 
modification level differences between intermediate cells and the rest of the 
cells. g, Bar plots showing the relative enrichment of two types of 5hmCG sites 
in different genomic regions. h, Heat map showing the known motif enrichment 
for 5hmCG types. i, Top enriched de novo motifs for 5hmCG types. P value, one-
sided Fisher’s exact test. j, Histograms and heat maps showing the relationship 
between two types of 5hmCG with mESC H3K27ac and H3K4me1 ChIP-seq signals 
from ENCODE (ENCSR000CGQ and ENCSR000CGN).
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enriched in basal-level 5hmC. Among them, a previously identified 
5mC reader73, Rfx1, was identified from both enriched for known motifs 
and de novo motifs analysis of type 2 5hmCG sites (Fig. 2h,i). In addi-
tion, compared to basal-level type 1 5hmCG, the type 2 sites are more 
enriched for active regulatory elements marked by H3K27ac (Fig. 2j 
and Extended Data Fig. 3h–j). The different patterns of the two 5hmCG 
types suggested the potential distinct regulatory functions of the two 
TET processivity modes. These results demonstrated the utility of 
SIMPLE-seq in revealing different 5hmCG types associated with distinct 
regulatory functions during 2i state to serum state transition of mESCs.

SIMPLE-seq recovered major cell types from PBMCs
To test the ability of SIMPLE-seq in resolving cell-type-specific 
(hydroxyl)methylome and methylome from in vivo systems, we 
applied SIMPLE-seq to snap-frozen PBMC samples. We sequenced 
approximately 3,000 PBMCs with an average number of approximately 
450,000 sequenced reads per cell and recovered 2,110 cells after filter-
ing low-coverage cells: more than 95% of reads can be mapped to the 
reference human genome (GRCh38), and, among them, 64.5% and 30.9% 
of reads were assigned as 5mC and 5hmC reads, respectively (Supple-
mentary Table 4). After removing the 32.1% PCR-duplicated reads of 
the 5mC modality, we obtained the median number of 136,835 unique 
mapped reads per cell with an average genomic coverage of 0.91% (from 
0.13% to 2.73%, at 95% interval). For 5hmC, we recovered a median num-
ber of 150,372 unique mapped reads per cell at PCR duplicate rates of 
25.6%—corresponding to 0.48% average genomic coverage for each 
single cell (from 0.07% to 1.43%, at 95% interval; Supplementary Table 4).

We then performed a similar dimensional reduction on PBMC data-
sets based on 5mC and 5hmC in CG, and CHG contents and single cells 
formed distinct groups on the UMAP plots (Fig. 3a,b and Extended Data 
Fig. 4a–g). Louvain clustering74 on 5mCG levels grouped the cells into 
five major clusters, which can be annotated as CD4+ and CD8+ T cells, B 
cells, natural killer (NK) cells and monocytes based on their promoter 
5mCG modification levels of the representative marker genes (Fig. 3c 
and Extended Data Fig. 4a,h). For example, TCF7 expression marks 
self-renewal CD4+ T cells75, and its promoter showed a hypomethyla-
tion pattern specifically in CD4+ T cells; the promoter region of B cell 
marker CD19 (ref. 76) is also hypomethylated in the corresponding 
track of aggregated single-cell signals (Fig. 3c). Interestingly, we found, 
for dimensional reduction and visualization with 5hmC, that the cell 
groups showed less distinct separation, but the identities of single cells 
were in good concordance with the cell types identified from 5mCG 
levels (Fig. 3b and Extended Data Fig. 4b–d). This is different from 
the observations in mESCs where our focus is the dynamic epigenetic 
changes of the two different states, in which the 5hmC sites mainly 
represent regions where epigenetic reprogramming occurs. For dif-
ferentiated cell types (such as PBMC) where cell state changes are less 
common, the cell identities were defined mainly by methylome, and, 
thus, 5hmC has lower resolution in revolving the static differences. 
By aggregating the 5hmC signal from single cells in groups defined by 
5mC-based clustering, we generated these cell-type-specific, paired 
5mC and 5hmC profiles from heterogeneous and low-5hmC-level cel-
lular populations.

Next, we calculated the differential modified regions (DMRs) 
for both 5mCG and 5hmCG pair-wisely for the immune cell types (see 
Methods for details) and identified from 416 to 1,360 5mCG DMRs and 
from 476 to 4,946 5hmCG DMRs (Fig. 3d–g, Extended Data Fig. 4i–m  
and Supplementary Tables 5 and 6). Motif enrichment analysis of 
5mCG DMRs revealed regulators for these immune cell types. For 
example, STAT3 is an important determinant of whether the naive 
T cell differentiates into regulatory or inflammatory T cell lineage77, 
whose binding motifs are hypomethylated in CD4+ T cells and hyper-
methylated in monocytes (Extended Data Fig. 4k). The transcriptional 
factor Bach2 is another key regulator that controls the formation and 
functions of multiple T cell lineages78, whose binding motifs are highly 

hydroxymethylated in CD4+ T cells (Fig. 3e). GREAT analysis revealed 
that both 5mC and 5hmC DMRs are involved in immune-related pro-
cesses, such as T cell co-stimulation and interferon-gamma-mediated 
signaling pathway (Fig. 3g and Extended Data Fig. 4m). These results 
suggest that SIMPLE-seq can generate matched cell-type-specific 5mC 
and 5hmC maps from heterogeneous PBMC samples.

Cell-type-specific analysis of cytosine modification states
To further study the relationship between 5mC and 5hmC at the immune 
cell types, we adopted the ChromHMM algorithm79, which is designed 
to integrate multiple chromatin datasets to discover de novo the major 
re-occurring combinations of 5mC and 5hmC modification patterns. We 
grouped the genome into 10 cytosine states, including 5mCG-marked 
regions (E3 and E4), 5hmCG-marked regions (E5), regions marked by 
both 5mCG and 5hmCG (E1 and E2), 5mCHG/5mCHH-enriched regions 
(E6), regions enriched for 5hmCHG (E7) or 5hmCHH (E8), regions with 
both 5mC and 5hmC in CHG/CHH contents (E9) and hypomethylated 
regions (E10) (Fig. 3h and Extended Data Fig. 5a). Among them, E3 and 
E5 (modifications in CG sites) are depleted from TSSs, and E5 and E8 
(5hmC in CG and CHH sites) are depleted from transcriptional end 
sites (TESs) (Extended Data Fig. 5b). To associate the different cytosine 
states with functional genomics regions, we overlapped the cytosine 
states with the ENCODE candidate cis-regulatory elements from the 
same representative cell type (Fig. 3i). E3 state showed the strongest 
association with transcription (intragenic regions), agreeing with the 
positive correlation of abundant gene body methylation with gene 
expression80. E5 state is enriched in active enhancers, and E7 and E8 
states are associated with weak enhancers, consistent with the asso-
ciation of 5hmC with enhancers81. Interestingly, we also found that 
E5 is highly enriched for heterochromatin, which is similar to mESCs 
in that a significant fraction of 5hmC sites previously identified with 
TAB-seq46 is enriched for the H3K9me3-associated heterochromatin 
regions (log2(observed/expected) = 2.68).

Next, we compared the conserved and differential cytosine states 
across different immune cell types. E2–4 and E9 states are the most 
stable groups among the immune cell types, and E1 and E5 are likely 
to be changed from one state to another between different cell types 
(Fig. 3j). We then grouped the regions of different states into conserved 
and differential regions, according to their differences between cell 
types, and analyzed their status of multiple histone modifications 
(Fig. 3k and Extended Data Fig. 5c–e). Interestingly, we found that, for 
the E3 state, the differential compartment shows a higher fraction of 
regions that are marked by H3K4me1 (P = 2.4 × 10−5) and H3K27me3 
(P = 3.8 × 10−4), corresponding to distal regulatory elements, whereas 
the average of 60.4% of conserved E3 regions is marked by H3K36me3, 
corresponding to gene bodies of transcribing genes (Fig. 3k). For the 
5hmCG-enriched E5 state, the differential groups have a higher frac-
tion of regions marked by repressive H3K27me3 mark (P = 0.005) while 
less marked by H3K4me1 (P = 0.004); similarly, the differential group 
of E7 state (5hmCHG) also has a higher fraction of regions marked by 
H3K27me3, suggesting that the differential 5hmCG and 5hmCHG across 
different cell types are likely to exist in bivalent or repressed regula-
tory elements (Extended Data Fig. 5c,d). For E9 states, we observed a 
decreased or increased fraction of region associated with H3K9me3 or 
H3K36me3, respectively (Extended Data Fig. 5e). We did not observe a 
significant difference in their relationships with histone marks for the 
rest of the cytosine states. GREAT analysis revealed that the differential 
groups of E3, E5 and E7 states (more likely to be associated with distal 
regulatory elements) are enriched for biological processes of specific 
cell types—for example, alpha-beta T cell differentiation for CD8+ T cells 
(E3) and phagocytosis/engulfment for monocytes (E7) (Fig. 3l and 
Extended Data Fig. 5f). These results suggest that integrated analysis 
of 5mC and 5hmC at single-base resolution from the same cells can 
help elucidate their regulatory roles in complex heterogeneous cel-
lular populations.

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-024-02148-9

Single-cell 5mC and 5hmC landscapes in the mouse brain
Previous studies revealed that 5hmC is highly abundant in the brain 
tissues71, although analyzing the cell-type-specific 5hmC maps from 
this heterogeneous tissue type is challenging due to few available 
high-throughput single-cell 5hmC sequencing methods. We applied 
SIMPLE-seq to snap-frozen mouse cerebral cortex tissue collected from 
8-week-old male mice. We sequenced approximately 6,000 cells to an 
average of 341,464 (combined 5mC and 5hmC) sequenced reads per cell 
and recovered 4,767 cells after filtering low-quality cells (79.5% recovery 
rate) (Supplementary Table 7). SIMPLE-seq recovers 63% (5mC) and 67% 
(5hmC) more unique reads per cell than the recent Joint-snhmC-seq 

method if sequenced to the same depth (Extended Data Fig. 6a,b)82. 
Next, we performed the joint clustering with the ‘weighted nearest 
neighbors’ approach using both 5mC and 5hmC modality (average 
modification levels in 100-kb non-overlapping bins across the genome) 
from the same cells and revealed 11 major brain cell types, including 
two excitatory neuron cell types (hypomethylated on Snap25, Neurod6 
and Slc17a7 promoters), one inhibitory neuron cell type (Snap25 and 
Gad1/2), two astrocyte cell groups (Apoe and Gfap), three oligodendro-
cyte cell groups (Mbp and Mobp), oligodendrocytes (Pdgfra), microglia 
cells (Csf1r) and endothelial cells (Flt1) (Fig. 4a–c). On the contrary, cell 
clustering based on 5mCG alone could resolve the three neuron cell 
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types while lacking the resolution for the two astrocyte subgroups; 
similarly, 5hmCG-based clustering does not resolve endothelial cells 
well (Extended Data Fig. 6c–e). These results suggest that the bi-modal 
profiles from SIMPLE-seq can be used to identify the major brain cell 
types and generate the cell-type-specific 5mC and 5hmC profiles with-
out the need for external reference maps.

Next, we aggregated the signal from single cells in the same group 
as defined by joint clustering and found that 5mCG is enriched for 
repressive histone mark H3K27me3, whereas 5hmCG is enriched for 
histone mark H3K4me1 (ref. 83) (Extended Data Fig. 6f,g). We then 
analyzed the relationships between 5mCG and 5hmCG modification 
levels with gene expression (Fig. 4d,e and Extended Data Fig. 6h). Pro-
moter 5mCG levels showed negative correlations with gene expression 
levels in both neuron and non-neuron cell types, whereas promoter 
5hmCG levels showed weak positive correlations with gene expres-
sion in neuron cells but higher correlations in non-neuron cell types 
(Fig. 4e). This is different from mESCs where a large fraction (58.8% of 
5hmCG sites overlapped with 5mCG) of 5hmCG are intermediates of 
active DNA methylation, and the promoter 5hmCG is weakly correlated 
with gene expression levels (Extended Data Fig. 2p). In addition, 5hmCG 
levels on the gene body regions are also positively correlated with gene 
expression, whereas 5mCG levels are weakly correlated (Fig. 4e). Next, 

we performed differential 5mCG and 5hmCG site analysis and identified 
264,918 and 69,549 sites for the 11 cell groups (log2(fold change) > 1; 
Methods) (Fig. 4f, Extended Data Fig. 6i and Supplementary Table 8). 
We found that the two excitatory neuron cell types have the highest 
abundance of 5hmCG sites (19.5% and 30.5% of total 5hmCG sites) 
and 5mCG sites (16.8% and 24.7% of total 5mCG sites). Motif and Gene 
Ontology (GO) term enrichment analysis revealed that these sites are 
possibly involved in gene regulation during neuron development pro-
cesses. For example, the binding motif for RUNX1 is enriched for EXC2 
5hmCG sites, and this gene is known to be involved in the development 
of cholinergic and motor neurons84. The astrocyte-enriched motif is 
predicted to be recognized by NFIX, which is a regulator driving astro-
cytic maturation85 (Fig. 4g and Extended Data Fig. 6j). By generating the 
cell-type-specific 5mC and 5hmC maps for mouse brain cell types, our 
data suggest that 5mC and 5hmC may have distinct regulatory roles in 
neuron and non-neuron cell types of mouse brain tissue.

Discussion
We report a high-throughput method, SIMPLE-seq, for joint analysis 
of 5mC and 5hmC at single-base and single-cell resolution. During the 
revision of this paper, several other exciting methods for single-cell 
joint analysis of 5mC and 5hmC were published82,86,87. In comparison, 
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Fig. 4 | Single-cell joint analysis of 5mC and 5hmC from the mouse brain. 
a, UMAP embedding showing the single-cell clustering based on 5mC and 
5hmC profiles from the mouse brain. Each dot represents a single cell and is 
colored according to its annotation based on promoter methylation levels of 
marker genes. b, Dot plots showing the promoter 5mCG levels (−1,500 bp to 
+500 bp) of representative marker genes in the detected cell types. c, Genome 
browser showing the CG modification levels at Snap25 (EXC2 highly expressed), 
Mbp (ODC2 highly expressed) and Csf1r (MGC highly expressed) loci. The 
differentially (hydroxyl)methylated regions for the two genes are indicated with 

pink boxes. d, Line plots showing the correlations between promoter cytosine 
modification levels and gene expression levels in EXC2 and ASC1 cell types.  
e, Heat map showing the Pearson’s correlation coefficients between promoter 
and gene body 5mC–5hmCG levels with gene expression in different cell types. 
f, Heat map showing the 5hmCG modification levels of cell-type-specific 5hmCG 
across the 11 cell types. g. Top enriched de novo motifs (left) and top enriched GO 
terms (right) for each cell type are also shown. P value, one-sided Fisher’s exact 
test. BP, Biological Process.
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scDARESOME and scDyad-seq are based on restriction enzyme cut-
ting and, thus, detect only one site per DNA fragment and could not 
analyze multiple neighboring 5mC and 5hmC sites in short ranges86,87. 
Compared to Joint-snhmC-seq, SIMPLE-seq converts only modified 
cytosines and provides higher fractions of mappable reads (>90% 
versus ~60%) (Extended Data Fig. 6a)82. Without the requirement to 
split genomic materials into two halves for 5mC and 5hmC library 
preparation, SIMPLE-seq could detect the two modifications from 
the same molecules with higher genomic coverages (Extended Data 
Fig. 6b). Unlike these methods that label individual cells in tubes or 
plates, SIMPLE-seq analyzes 104–105 and is preferred for heterogeneous 
samples with larger cell numbers. Here we demonstrated SIMPLE-seq 
by applying it to cultured mESCs, heterogeneous human primary 
PBMC samples and mouse brain tissues, giving genome-wide 5mC and 
5hmC maps at cell type resolutions for these heterogeneous cellular 
populations with different 5hmC dynamics and modification levels. 
By jointly analyzing the two epigenetic modalities at single-cell and 
single-molecule levels, we found that the DNA methylation dynamics 
vary across cells of different states; in addition, we identified differ-
ent groups of regulatory elements with distinct epigenetic patterns.

By evaluating DNA methylation and active demethylation dynam-
ics in single cells, we showed that, even for the seemly homogeneous 
mESC populations, distinct distributions of 5mC–5hmC relationships 
exist in different cells: the cells with more disordered 5mC–5hmC 
relationships tend to reprogram and proliferate slower compared 
to the other cells with more regulated epigenome programs. Such 
epigenetic dynamics analysis provides an approach to identify poten-
tial ‘intermediate’ or ‘declined’ cell populations for the discovery 
of candidate transient epigenetic reprogramming events that may 
be associated with disease progression or aging from complex tis-
sues. By identifying 5hmCG sites that are selectively generated from 
methylated regions, we found that 5hmCG sites flanked by 5mCG sites 
are associated with higher permissive activities. Interestingly, these 
5hmC sites also showed the highest modification levels during state 
transition of mESCs, suggesting a possible role of TET-dependent 
de-repression of master regulators during mESCs’ epigenetic repro-
gramming. In addition, whether a similar mechanism exists and can 
be used for other differentiation systems—for example, identifying 
master regulators for efficient generation of pancreatic cells for the 
treatment of diabetes88—requires further investigations. By inte-
grated analysis of TF gene expression with motif enrichments on 5mC 
and 5hmC sites, we revealed that TF binding is likely to be repressed 
by hypermethylation, whereas TF binding motifs on 5hmC-modified 
regions are positively correlated with TF gene expression. However, 
further biochemical and cellular analyses are desired to further dem-
onstrate the biological functions of these DNA modifications on 
regulatory elements73. We also showed that 5mC and 5hmC have 
varying abilities in resolving cell types for different cellular environ-
ments. For dynamic systems, such as state transition of mESCs, 5hmC 
is more able to separate different cell populations; for relatively 
static differentiated systems, such as immune cell types in PBMCs, 
more distinct signatures were observed for 5mC but not for 5hmC; 
whereas, for tissues with abundant 5hmC levels (such as the mouse 
brain), both 5mC and 5hmC have similar resolution in resolving cell 
types. Thus, SIMPLE-seq is a versatile tool to identify cell types and 
states for multiple systems by simultaneously obtaining information 
on both of the two epigenetic modifications.

The current SIMPLE-seq protocol relies on plate-based com-
binatorial barcoding19,60,83 while retaining the compatibility with 
droplet-based combinatorial indexing platforms89,90 for fast and 
ultra-high-throughput single-cell epigenomics profiling. We provided 
an example of how the convertible index (5caC pre-deposited in 5hmC 
recording primers) could be used for decoding multiple readouts 
from the same mixture without the need for physical separation; this 
strategy could also be integrated with approaches for single-molecule 

multiplexed detection of other modalities, such as different types of 
RNA modifications. In the present study, we focused only on 5mC and 
5hmC, two major cytosine epigenomic marks; with additional modifica-
tion, 5mC and 5hmC should be able to be further jointly monitored with 
other molecular layers, including transcriptome, three-dimensional 
genome structure, chromatin states and protein abundances36,83,91–97 
for larger-scale single-cell multimodal integration98. The base calling of 
5mC and 5hmC is dependent on C-to-T mutational signals, and existing 
base mutation and unblocked 5fC could result in false-positive detec-
tion (0.24–1.52% according to 5fC:5hmC ratios)59; on the other hand, the 
incomplete converted signal (currently ~87%) may become a source of 
false-negative detection and could be further optimized in the future to 
improve sensitivity. Taking advantage of the throughput of SIMPLE-seq, 
we addressed such ‘dropouts’ by dimension reduction and imputation 
from closely related cells99; future optimizations, including increasing 
labeling efficiency100, pre-blocking 5fC bases and reducing amplifica-
tion and sequencing errors54,101 will further improve the detection. 
Compared to scRNA-seq and scATAC-seq, SIMPLE-seq showed lower 
resolution in identifying minor cell types due to the high percentage 
of missing values; future development in combining SIMPLE-seq with 
scRNA-seq will help to address this by identifying a cell type’s identity 
from the transcriptome-based analysis and reconstructing 5mC and 
5hmC landscapes at cell type resolution. Compared to enzymatic 
5hmC detection approaches31,45, SIMPLE-seq allowed the detection 
of multiple 5hmC and 5mC sites from the same fragments. Besides 
single-cell analysis, the non-destructive sequential labeling strategy 
described here is also amenable for the measurement of low-input, 
highly fragmented materials, such as cell-free DNA (cfDNA). Recent 
focuses on measuring 5mC102 and 5hmC103 from cfDNA highlighted 
their potential in identifying types and stages of tumors, and measuring 
these two modifications from the same molecules jointly is expected 
to further improve the dissection of their comprehensive relationships 
and distinct signatures in different cancer types.
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Methods
Cell culture and processing
2i-cultured version 6.5 mESCs were regularly maintained on the 
pre-gelatinized dishes without feeders, supplemented with two 
inhibitors (2i)—1 mM PD0325901 (Selleck Chemicals, S1036) and 3 mM 
CHIR99021 (Selleck Chemicals, S1263)—in the presence of 1,000 U ml−1 
leukemia inhibitory factor (LIF, Millipore, ESG1107) and 20% FBS (Gibco, 
26140087) in DMEM/F-12 (Gibco, 11320033). mESCs (serum) were cul-
tured with DMEM/F12 with 20% FBS and 1,000 U ml−1 LIF. Human PBMCs 
were purchased form AllCells (PB003F-C). Cultured cells or PBMCs 
were harvested and washed with fresh no-serum media (DMEM/F-12, 
Gibco) and then re-suspended in 10 ml of no-serum media before 
proceeding to SIMPLE-seq experiments. Dry ice snap-frozen mouse 
cerebral cortex tissue dissected from 8-week-old male mice (C57BL/6J) 
was ordered from The Jackson Laboratory. Single-cell suspensions were 
prepared from douncing of the frozen tissue with Douncing Buffer 
(0.25 M sucrose (Sigma-Aldrich, S7903), 25 mM KCl (Sigma-Aldrich, 
P9333), 5 mM MgCl2, 10 mM Tris-HCl pH 7.4, 1 mM DTT (Sigma-Aldrich, 
D9779), 1× protease inhibitor cocktail (Sigma-Aldrich, 11873580001), 
0.5 U µl−1 RNaseOUT (Invitrogen, 10777019), 0.5 U µl−1 SUPERaseIN 
(Invitrogen, AM2696) and 0.1% Triton X-100 (Sigma-Aldrich, T9284)) 
and followed by the SIMPLE-seq procedure.

Oligonucleotide and model DNA synthesis
Oligonucleotides containing site-specific 5mC, 5hmC and 5caC (Sup-
plementary Table 1) were synthesized on the Expedite 8909 nucleic 
acid synthesizer using commercially available phosphoramidites 
(Glen Research, 10-1510-02, 10-1564-02 and 10-1066-02). Regular oli-
gonucleotides were purchased from Sangon Biotech. Long duplex 
5mC DNAs (T1M; Supplementary Table 1) were constructed from 
lambda DNA, and in vitro methylation reaction was performed using 
S-adenosylmethionine (New England Biolabs (NEB), B9003S) and 
M.SssI methyltransferase (NEB, M0226S). Methylation of CpGs on 
DNA were validated by Sanger sequencing. Long duplex 5hmC DNAs 
(T2H; Supplementary Table 1) were prepared through ligation of short 
duplex fragments (20–40 base pairs (bp)) with sticky overhangs. 
Long duplex 5mC and 5hmC DNAs (T3MH; Supplementary Table 1) 
for next-generation sequencing were produced by the annealing and 
extension method.

Oxidation and malononitrile-based selective labeling of 5hmC
To achieve selective 5hmC oxidation, we used potassium ruthenate 
(K2RuO4), a ruthenium (Ru6+) oxidant. Although KRuO4 caused severe 
DNA degradation, K2RuO4-mediated oxidation is very mild but also 
complete (Extended Data Fig. 1d,e). Then, 10× potassium perruthen-
ate (Sigma-Aldrich, 334537) solution was prepared according to the 
published protocol43. In brief, 0.15 mmol potassium perruthenate was 
added to 0.5 M NaOH solution (1 ml; Alfa Aesar, A18395) and vortexed 
to make sure all solid was dissolved, and the solution was incubated at 
25 °C for 2 d to produce potassium ruthenate solution (K2RuO4). Before 
5hmC oxidation, genomic DNA was purified with 1× AMPure XP beads 
(Beckman Coulter, B23319), followed by additional purification with 
Micro Bio-Spin P-6 SSC column (Bio-Rad, 732–6200). The DNA was 
then denatured in 0.05 M NaOH for 30 min at 37 °C, followed by chill-
ing on an ice water bath for 5 min. Next, 1.5 µl of 1× oxidant was added 
to the denatured DNA sample (28.5 µl) and briefly mixed with tapping, 
followed by incubation on ice for 1 h. The oxidized DNA was purified 
with a Micro Bio-Spin P-6 SSC column. To label the newly generated 5fC, 
the reaction was carried out in 10 mM pH 7.0 Tris buffer and 150 mM 
malononitrile ( J&K, 261700) in a total volume of 35 µl at 37 °C for 20 h 
and 850 r.p.m. in a thermomixer.

Oxidation and pic-borane-based selective reduction of 5mC
First, 293F cells were transfected with pCDNA3-Flag-mTET1CD 
plasmid using PEI (Polysciences, 23966-1). After 48 h, cells were 

collected and processed with the published mTET1CD purification 
protocol44. Cells were re-suspended in the lysis buffer (50 mM Tris 
buffer pH 7.5 (Invitrogen, 15567027), 500 mM NaCl (Invitrogen, 
AM9759), 1× cOmplete protease inhibitor cocktail (Sigma-Aldrich, 
11873580001), 1 mM PMSF (Thermo Fisher Scientific, 36978) and 
1% Triton X-100 (Sigma-Aldrich, T8787)) and incubated on ice for 
20 min. Cell lysate was then spun down for 30 min at 30,000g and 
4 °C. The supernatant was then purified with Anti-flag Affinity Gel 
Beads 4FF (Smart-Lifescience), and purified protein was eluted with 
elution buffer (20 mM HEPES pH 8.0 (Sigma-Aldrich, H3375), 150 mM 
NaCl, 0.1 mg ml−1 3× Flag peptide (Sigma-Aldrich, F4799F4799),  
1× cOmplete protease inhibitor cocktail and 1 mM PMSF). Eluted 
protein solution was concentrated in storage buffer (20 mM HEPES 
pH 8.0, 150 mM NaCl and 1 mM dithiothreitol, 30% v/v glycerol) and 
stored at −80 °C. mTET1CD oxidation reaction was prepared as fol-
lows: DNA up to 100 ng, 50 mM HEPES pH 8.0, 100 mM NaCl, 1 mM 
α-ketoglutaric acid (Sigma-Aldrich, K3752-5G), 2 mM L-ascorbic acid 
(Sigma-Aldrich, 95210-50G), 1.2 mM ATP (Sigma-Aldrich, A6419), 
2.5 mM DTT (Fluorochem, M02712), 100 µM Fe2+ (Sigma-Aldrich, 
09719) and 8 µM mTET1CD. After that, the oxidation reaction was 
carried out at 37 °C for 80 min. Then, 0.8 U of Qiagen Protease (Qia-
gen, 19157) was added to the oxidation reaction and incubated for 
1 h at 50 °C. The reaction mixture was purified using 1.8× AMPure XP 
beads. Then, 2-picoline-borane (pic-borane, Sigma-Aldrich, 654213-
5G) was dissolved in DMSO to give ~3.26 M solution. Next, 2.5 µl of 3 M 
sodium acetate solution, pH 5.2 (Sigma-Aldrich, R1181), and 12.5 µl of 
3.26 M pic-borane solution were added to 10 µl of DNA sample and 
incubated at 70 °C in a thermocycler for 4 h. The reaction mixture was 
purified with Zymo Oligo & Clean Concentrator Kit (Zymo Research, 
D4060) or Bio-Spin P-30 Gel Column (Bio-Rad, 732-6223). The puri-
fied product was subjected to library amplification using high-fidelity 
uracil-tolerated DNA polymerase.

Potential degradation estimates of labeling reactions
Lambda DNA was treated with 5hmC-specific chemistry, and lambda 
DNA of equal amount was used as a control. Both control and treated 
lambda DNA were processed with the same procedures, including 
purification steps, except the chemical treatment. A 222-bp-specific 
region on lambda DNA was chosen as representative to perform qPCR 
to estimate the integrity of lambda DNA (Supplementary Table 1). 
Fragmentated lambda DNA (>400 bp) was treated with 5hmC-specific 
chemistry and 5mC-specific chemistry sequentially, and gel analysis 
was performed using the same amount of sample recovered and a 
control sample without treatment.

Sanger sequencing of the labeled model DNA
Single-strand synthesized DNA that contains both 5mC and 5hmC 
(T5MH; Supplementary Table 1) was treated with 5hmC-specific chem-
istry and 5mC-specific chemistry sequentially, and, after each round of 
labeling, PCR amplification was performed using 2× Kapa U+ HiFi Master 
Mix (Kapa Biosystems, 0795900520001). PCR products were purified 
with DNA Clean & Concentrator Kit (Vistech) for Sanger sequencing.

Barcoded Tn5 assembly
To generate barcoded Tn5 transposase, barcoded DNA oligos (33 
nucleotides (nt), which consist of 9-bp overhang for ligation and 5-nt 
barcode region and 19-nt mosaic pMENTs (5Phos/GCATTCGAGACG-
CAAGATGTGTATAAGAGACAG)) were annealed to a pMENTs oligo 
(5Phos/CTGTCTCTTATACACATCT/ddC; ddC, dideoxycytosine) in a 
thermocycler with the following program: 95 °C for 5 min, slowly cooled 
to 4 °C with a temperature ramp of 1 °C per minute. The transposons 
(9 µl, 10 µM) were then mixed with 10 µl of unloaded transposase Tn5 
(Vazyme, 0.5 mg ml−1, S601) and 17 µl of coupling buffer (Vazyme, S601), 
mixed by pipetting and quickly spun down and incubated at 30 °C for 
30 min. The loaded transposases can be stored at −20 °C.
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Oligo mixing experiment
DNA oligos that contain 5mC or 5hmC (T4C, T4M and T4H; Supple-
mentary Table 1) were mixed with unmodified oligos in varying ratios 
(0%, 20%, 40%, 60%, 80% and 100%) and treated with the SIMPLE-seq 
protocol, including 5hmC treatment, primer extension, 5mC treat-
ment and PCR amplification. PCR products were purified with 1.8× 
AMPure XP beads and eluted with 20 µl of nuclease-free water for 
high-throughput sequencing.

SIMPLE-seq procedures
Cell fixation and nucleosome depletion. To fix the cells, 406 µl of 
37% formaldehyde (Sigma-Aldrich, F8775) was added into 10 ml of cell 
suspension and incubated at room temperature for 10 min with gentle 
shaking. After the incubation, 800 µl of 2.5 M glycine (Sigma-Aldrich, 
G7126) was immediately added and rotated up and down for five times 
and incubated on ice for 5 min to quench the fixation. The fixed cells 
were spun down at 4 °C and 550g for 8 min, and the cell pellet was 
washed with ice-cold PBS buffer (Invitrogen, 10149) and spun down 
again at 4 °C and 550g for 8 min. The cell pellet was then re-suspended 
in ice-cold NIB buffer (20 mM HEPES (Sigma-Aldrich, H3375), 10 mM 
NaCl, 3 mM MgCl2 (Invitrogen, AM9530G), 0.1% Igepal (Thermo Fisher 
Scientific, 85124) and 1× cOmplete protease inhibitor cocktail) and 
incubated on ice for 20 min with gentle shaking. Nuclei were spun 
down again at 4 °C and 500 g for 5 min and re-suspended in 1× NEBuffer 
2.1 (NEB, B7202) supplemented with 0.3% SDS (Invitrogen, 15553-035) 
and incubated at 60 °C and 850 r.p.m. for 10 min in the thermomixer. 
To quench the reaction, 200 µl of 10% Triton X-100 was then added, 
and the incubation was continued at 37 °C and 850 r.p.m. for 60 min. 
Nuclei were spun down at 100g and 4 °C for 10 min.

Species mixing. To estimate the chance of random cellular barcode 
collision, we performed a species-mixing experiment as described 
in the previous study19 with minor modifications. In brief, human 
HEK293T cells and mESCs were permeabilized with ice-cold NIB 
buffer. Nuclei were then spun down at 4 °C and 500g for 5 min and re- 
suspended in 1× NEBuffer 2.1 supplemented with 0.3% SDS and incu-
bated at 60 °C and 850 r.p.m. for 10 min in the thermomixer and 
quenched by adding 200 µl of 10% Triton X-100, and the incubation 
was continued at 37 °C and 850 r.p.m. for 60 min. Nuclei were spun 
down at 10g and 4 °C for 10 min and resuspended in PBS and counted. 
Next, 50,000 human nuclei and 100,000 mouse nuclei were mixed and 
spun down at 100g and 4 °C for 10 min, and barcoded tagmentation 
was then performed with Tn5 transposase pre-labeled with barcode 01.

Barcoded tagmentation. The nuclei pellet was resuspended in 1× Tn5 
tagmentation buffer (Vazyme, S601), and a brief sonication was per-
formed to break the nuclei clumps. Nuclei were passed through a 20-µm 
cell strainer. The nuclei were distributed into 48 wells (10,000 nuclei 
per well) that contained 12 well-specific barcoded Tn5 transposases 
(each of four wells sharing the same Tn5 barcode) and were incubated 
at 55 °C and 300 r.p.m for 30 min in a thermomixer. The reaction was 
quenched by adding 15 mM EDTA (Invitrogen, AM9260G), and nuclei 
were pooled together and passed through a 20-µm cell strainer. Nuclei 
were spun down at 1,000g and 4 °C for 10 min and resuspended in 1 ml 
of 1× NEBuffer 3.1 (NEB, B7203) and transferred to Ligation Mix (2,262 µl 
of UltraPure water (Invitrogen), 500 µl of 10× T4 DNA Ligase Buffer, 
50 µl of 10 mg ml−1 BSA, 100 µl of 10× NEBuffer 3.1 and 100 µl of T4 DNA 
Ligase (NEB, M0202L)).

Ligation-based combinatorial barcoding. Next, 40 µl of the liga-
tion mix was distributed to BC Plate 01 and incubated in a ther-
momixer at 37 °C and 300 r.p.m. for 30 min. After that, 10 µl of 
R01-Blocking-Solution (264 µl of 100 µM Blocker-R01 oligo, 250 µl 
of 10× T4 DNA Ligase Buffer and 486 µl of UltraPure water) was then 
added to each well, and the reaction was continued for 30 min. All nuclei 

were pooled together and centrifuged at 1,000g for 10 min at 4 °C. The 
second round of ligation was carried out similarly as the first round of 
ligation, except using BC Plate 02 and Blocker-R02 oligo instead of the 
reagents used above. After 30 min of the ligation reaction, Termination 
Solution (264 µl of 100 µM Blocker-R02, 250 µl of 0.5 M EDTA and 236 µl 
of UltraPure water) was added to quench the reaction. Typically, about 
100,000 nuclei could be tagged after two rounds of ligation-based bar-
coding. Nuclei were resuspended in PBS buffer, counted and separated 
to sub-libraries containing optimal ~2,000 nuclei per tube, and each 
sub-library was diluted to 35 µl by PBS buffer. Then, 5 µl of 4 M NaCl, 5 µl 
of 10% SDS and 5 µl of 10 mg ml−1 Protease K (NEB, P8107S) were added 
and incubated in the thermomixer at 55 °C for 2 h and 850 r.p.m. The 
samples were cooled to room temperature, purified with 1× AMPure 
XP beads and eluted with 30 µl of nuclease-free water.

Second adaptor tagging. Genomic DNA fragments were incubated at 
72 °C for 5 min and then chilled on an ice bath for 3 min. Next, 1× Exonu-
clease I reaction buffer and 1 µl of Exonuclease I (NEB, M0293S) were 
added to DNA solution and incubated at 37 °C for 60 min to remove 
excess Linker_R02. After 1.8× AMPure XP beads purification, DNA solu-
tion was incubated at 95 °C for 1 min in a thermocycler with a heated lid 
and then chilled on an ice bath. For the 3′-end ligation, Bridge Adapter 
(final concentration 10 µM), 1× T4 DNA Ligase Buffer, PEG8000 (7.5% 
w/v), 30 U of T4 DNA ligase (Thermo Fisher Scientific, EL0013) and 
nuclease-free water were added to the mixture on ice, to a total volume 
of 30 µl. The reaction was performed at 20 °C for 16 h, purified with 1× 
AMPure XP beads and eluted with 26 µl of nuclease-free water.

5hmC transition and 5hmC-to-T recording. Then, the genomic DNA 
was spiked with a 10-pg mixture of adaptor-ligated T1M, T2H and T3MH 
and subjected to 5hmC-specific oxidation and malononitrile-based 
selective labeling. To obtain the 5hmC profiles from the single cells, 
the 5hmC-labeled DNA was subjected to primer extension to record 
the 5hmC-to-T transition signal. Primer extension mix (10 µl of 5× 
KAPA buffer GC, 1 µl of 10 mM dNTPs, 2 µl of 10 µM P7-indicator primer 
and 0.8 µl of KAPA2G Robust HS DNA polymerase (Roche, KK5023)) 
was added, and primer extension was performed with the following 
program: step 1: 95 °C × 5 min; step 2: 65 °C × 60 s and 68 °C × 8 min 
and repeat step 2 an additional 15 times; and step 3: 72 °C × 10 min and 
hold at 4 °C. Then, 3 µl of 10× Exonuclease I reaction buffer and 1 µl of 
Exonuclease I were added to the mix, and the primer digestion reaction 
was incubated at 37 °C for 60 min and purified using 1.8× AMPure XP 
beads and eluted with 10 µl of nuclease-free water.

5mC transition and indexing PCR. After the primer extension reac-
tion, the purified DNA was subjected to 5mC-specific oxidation and 
pic-borane-based selective labeling immediately. After the reaction, 
the final library was amplified by PCR amplification mix (25 µl of 2× 
Kapa U+ HiFi Master Mix, 2.5 µl of 10 µM Universal primer and 2.5 µl 
of 10 µM Index primer), and the reaction was performed with the fol-
lowing program: step 1: 98 °C × 10 s; step 2: 98 °C × 10 s, 68 °C × 15 s 
and 72 °C × 1 min and repeat step 2 an additional 3–5 times; and step 
3: 72 °C × 10 min and hold at 4 °C. The product was purified with 1.8× 
AMPure XP beads and eluted with 20 µl of nuclease-free water.

Sequencing. The purified libraries were sequenced on an MGISEQ- 
2000 sequencer (MGI) with the following read lengths: PE 200 +6 + 100 
(Read 1 + Index 1 + Read 2); or on a NovaSeq sequencer (Illumina) with 
the following read lengths: PE 150 + 8 + 8 + 150 (Read 1 + Index 1 + Index 
2 + Read 2).

Data analysis procedures
Pre-processing of SIMPLE-seq data. Cellular barcode extraction 
was carried out as previously described83 with minor modifications. 
In brief, (1) unique molecular identifiers (UMIs) were extracted from 
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the first 10 bp of Read 2; (2) linker sequences were then identified 
to locate the first base of BC1 (11–15), BC2 (48–52) and BC3 (79–83); 
(3) barcode sequences were appended and mapped with Bowtie104 
to the reference with all possible combinations to assign the Cell 
ID for each read: reads with more than one mismatch and can be 
assigned to more than one cell were discarded (>85% of reads were 
retained in this study); (4) adaptor sequences were trimmed with Trim 
Galore105, and low-quality reads (minimal read length L = 30, minimal 
base-calling quality Q = 30) were excluded from downstream analyses; 
(5) reads were mapped to the mouse GRCm38 or the human GRCh38 
reference genome with Bowtie2 (ref. 106); and (5), finally, 5mC and 
5hmC reads were split based on indicator bases to generate separate  
BAM files.

Reads splitting and modified site calling. Mapped 5mC and 5hmC 
reads were first split according to the indicator sequence of each read. 
To split the reads, we assign the reads with both 5caC sites in the indica-
tor sequence converted (5hmC) or unconverted (5mC); the assignment 
accuracy is estimated as 99.94% based on measured non-converted 
5caC sites. In addition, the efficiency of the primer extension steps 
could also contribute to the imbalance of 5mC–5hmC reads (Extended 
Data Fig. 1p).

For modified site calling at the single-cell level, we consider all 
cytosines with at least one read covered in the given single cell, and 
cytosine sites with more than 50% of C-to-T mutation rates were called 
modified cytosine. For modified base calling at the pseudo-bulk level, 
the following criteria were used: (1) ≥10 reads covered, (2) ≥10% C-to-T 
mutational rates and (3) Fisher’s exact test P < 0.05, compare with 
non-specific C-to-T mutation of the genome.

Calculation of 5mC and 5hmC conversion levels on spike-in DNAs. 
Mapped 5mC and 5hmC reads were first split according to the indicator 
sequence of each read. The conversion rate of 5mC and 5hmC of known 
positions is averaged from all the detected reads. The non-specific 
conversion rate of 5hmC reads and 5mC reads is also averaged from 
all the C-to-T mutation of unmodified cytosines with known positions 
on spike-in dsDNA.

Normalization of 5mC and 5hmC modification levels. We performed 
normalization steps to adjust the estimated 5mC/5hmC modifica-
tion levels at region-scale and global-scale of single cells. First, the 
non-mutational signals from the complementary strand were adjusted 
by multiplexing the average C-to-T rates by 2 (the fractions of reads 
derived from the complementary strand without base modification 
is expected to be 50% from population level). Next, the modification 
levels were adjusted according to the standard curve based on the 
oligo mixing experiments in Extended Data Fig. 1l,m. For site-level 
normalization, only the standard curve was applied.

Cell clustering with 5mC and 5hmC. Alignment files were con-
verted to the cell-to-abundance matrix with cells as columns and 
5mC–5hmC modification levels as rows (average abundance in 100-kb 
non-overlapping bins). Cells with fewer than 10,000 bins covered and 
bins with less than 50% of cells covered were removed, and missing 
values were imputed from the average levels for all cells with values. 
The cell-to-abundance matrix was then converted to a cell-to-cell 
similarity matrix by calculating the pair-wise cosine distance for each 
cell, followed by visualization with UMAP107 and clustering with the 
Louvain algorithm74 in Seurat108 software. For joint clustering, the 
weighted nearest neighbor analysis framework in Seurat108 software  
was used.

Calculation of cytosine modification entropy. To quantify the dis-
tributions of 5hmC states across single cells, we calculated the normal-
ized Shannon entropy109 of individual cells’ disorder of 5hmC–5mC 

relationships. For each 5hmCG site, the numbers of 5hmCG sites and 
5mCG sites within the ±100-bp range in the same cell were counted. 
The 100-bp range is determined by the sequencing read length, and 
scanning a longer range could increase the false-positive detection 
from different alleles. Next, the frequency of 5hmCG sites with the same 
number of flanking 5hmCG and the same number of flanking 5mCG 
sites was calculated by dividing the number of these 5hmCG sites (xi) 
by the total number of 5hmCG sites captured in this cell (n5hmCG): 
pi = xi / n5hmCG. The cytosine modification entropy was then calculated 
using the formula: H = −∑n

i=1 pi log(pi) . To estimate the background 
noise, we shuffled the cell barcodes of detected 5mCG sites and calcu-
lated the background level cytosine modification entropy; the shuffling 
was performed for 10 times to obtain the average background levels 
for each cell.

Classification of 5hmC sites. To identify 5hmCG sites flanking by 
5mCG, we first filtered fragments covered by both 5mC and 5hmC 
detection reads in each cell and identified 5hmCG sites detected in at 
least five cells from these ‘dual-omics’ fragments. Next, for each 5hmCG 
site, we scanned CG sites within ±100-bp range for each individual cell, 
and the numbers of cells without flanking 5mCG (ni) and the numbers of 
cells with flanking 5mCG sites (nd) were counted. To generate the back-
ground model, we shuffled the Cell IDs for the ‘dual-omics’ fragments 
and scanned the CG sites within ±100-bp range for each individual 
shuffled cell. To ensure reproducibility, the Cell IDs were shuffled 
10 times, and the average numbers of shuffled cells without flanking 
5mCG (nis) and the average numbers of cells with flanking 5mCG sites 
(nds) were counted. To identify the 5hmCG sites enriched for cells with 
flanking 5mCG sites (type 2) from basal level 5hmCG sites (type 1), a 
cutoff (r) was applied to select 5hmCG sites with higher fractions of 
5mCG flanking cells (ni / nd > r and nis / nds > r in the shuffled group). We 
calculated false-positive detection rates (FDRs) based on the fraction 
of averaged false detected sites from shuffled groups in total detected 
sites, and FDR = 0.0467 was selected.

Cytosine state analysis. Cytosine state analysis was carried out with 
ChromHMM79 software to integrate 5mC and 5hmC modification lev-
els in different cell types. To prepare input for ChromHMM, average 
modification levels were calculated in 5-kb non-overlapping bins for 
5mC (CG, CHG and CHH) and 5hmC (CG, CHG and CHH). We tested vary-
ing numbers (2–12) of states and chose the 10-state model because it 
recapitulated all modification combinations in the rest of the models. 
To identify the conserved and differential regions, we compared the 
cytosine states of the same genomic regions across different cell types: 
genomic regions which were classified as the same cytosine state in all 
five cell types were grouped as ‘conserved regions’; regions which were 
classified into at least two different states in the five cell types were 
grouped as ‘differential regions’.

Pseudotime analysis. Pseudotime analysis was carried out with Mono-
cle3 (ref. 110) software based on dimensional reduction of 5mCG modi-
fication levels in 100-kb non-overlapping bins. ChromVAR65 software 
was then used to calculate the TF binding motif enrichment score for 
5mC and 5hmC sites (extended 500 bp for both upstream and down-
stream directions) in single cells. To identify potential functional TF 
binding motifs, motifs with positive and negative correlations (Spear-
men’s correlation > 0.2 or < −0.2) between 5mC and 5hmC modification 
levels along the pseudotime were retained.

Differential (hydroxyl)methylated regions and site analysis. To 
identify differential methylated and hydroxymethylated regions, aver-
age CG site modification levels were first calculated for all cells of the 
same cell type for each 5-kb non-overlapping bins. For pair-wise cell 
type differential modified regions, bins with at least 10% of maximum 
modification levels (5mCG and 5hmCG) and at least four-fold (5mCG) 
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or eight-fold (5hmCG) of modification level difference (A versus B) and 
Fisher’s exact test P < 0.05 were considered as differentially modified 
regions. Motif enrichment analysis was carried out with Homer111 soft-
ware, and GO enrichment analysis was carried out with DAVID112 with 
default parameters. To identify cell-type-specific 5mCG and 5hmCG 
sites in the mouse brain dataset, single-cell reads from the same cell 
type were first aggregated, and CG sites with fewer than 10 reads cov-
ered were removed. Next, 5mCG and 5hmCG sites with more than 10% 
C-to-T mutational rates were preserved. CG sites with modification 
levels at least two-fold compared to the average modification levels 
of the rest of the cell types were identified as cell-type-specific 5mCG 
or 5hmCG sites.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Raw sequencing and processed data generated in this study are avail-
able from the Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.
nih.gov/geo/) with accession number GSE197740 (ref. 113). Other exter-
nal datasets were downloaded from the GEO with the following acces-
sion numbers: WGBS and TAPS of mESC55 (GSE112520), RNA sequencing 
of mESC (2i and serum)66 (GSE23943), TAB-seq of mESC46 (GSE36173), 
Joint-snhmC-seq of mouse brain82 (GSE236798), Paired-Tag of mouse 
brain83 (GSE152020); ArrayExpress with the following accession num-
bers: scRNA-seq of mESC114 (E-MTAB-2600); 10x Genomics website: 
scRNA-seq of PBMCs (https://www.10xgenomics.com); ENCODE with 
the following accession numbers: DNase-seq ChIP-seq of E14 mESC 
(ENCSR000CMW), H3K4me1 ChIP-seq of E14 mESC (ENCSR000CGN), 
H3K27ac ChIP-seq of E14 mESC (ENCSR000CGQ), H3K4me1 ChIP-seq 
of immune cells (ENCSR777RWW (CD4+ T cell), ENCSR631BPS (CD8+ 
T cells), ENCSR214VUB (B cells), ENCSR963TKB (NK cells) and ENCS-
R400VWA (monocytes)), H3K4me3 ChIP-seq of immune cells (ENCS-
R263WLD (CD4+ T cells), ENCSR231FDF (CD8+ T cells), ENCSR269OVV 
(B cells), ENCSR570AUC (NK cells) and ENCSR796FCS (monocytes)), 
H3K27ac ChIP-seq of immune cells (ENCSR546SDM (CD4+ T cells), 
ENCSR835OJV (CD8+ T cells), ENCSR191ZQT (B cells), ENCSR391EQV 
(NK cells) and ENCSR012PII (monocytes)), H3K27me3 ChIP-seq of 
immune cells (ENCSR043SBG (CD4+ T cells), ENCSR797GOJ (CD8+ 
T cells), ENCSR522EGW (B cells), ENCSR939JZW (NK cells) and ENCS-
R080XUB (monocytes)), H3K9me3 ChIP-seq of immune cells (ENCS-
R453GNY (CD4+ T cells), ENCSR905SHH (CD8+ T cells), ENCSR295PSK 
(B cells), ENCSR021FSY (NK cells) and ENCSR236JVK (monocytes)), 
H3K36me3 ChIP-seq of immune cells (ENCSR828WZG (CD4+ T cells), 
ENCSR694CDP (CD8+ T cells), ENCSR789RGI (B cells), ENCSR519SOC 
(NK cells) and ENCSR244XWL (monocytes)) and ChromHMM states 
of NK cells (ENCSR972ZND).

Code availability
Custom scripts used for analyzing SIMPLE-seq datasets are available 
from GitHub (https://github.com/cxzhu/SIMPLE-seq)115.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Sequential chemical labeling enables simultaneous 
detection of 5mC and 5hmC bases on the same molecules. a, Overview of TAPS 
and hmC-CATCH. b, Sanger sequencing results showing the ‘C-to-T’ conversion 
signal from model oligonucleotide sequence (T5MH) before treatment, after 
5hmC labeling, and after both 5hmC and 5mC labeling. c, Schematics of chemical 
labeling for 5hmC and 5mC. d, qPCR result of lambda DNA (25,086bp-25,308bp) 
before and after potassium ruthenate (K2RuO4) treatment; n = 3 (Treated),  
n = 3 (Control). Data are presented as 6.020 ± 0.006 (Treated) and 5.957 ± 0.026 
(Control). e, Agarose gel images of dsDNA of fragmented lambda DNA treated 
with 5hmC-labelling reaction only (left panel) and sequential 5hmC and 5mC-
labelling (right panel). Experiment was performed once. f, Barplot showing the 
distribution of C-to-T mutation rates for unmethylated CH sites and methylated 
CG sites. g, C-to-T mutation signals on both strands of T1M spike-in model DNA, 
symmetric methylated CG sites are indicated in red on the sequences below.  
h, Genome browser view showing the sequenced reads aligned to spike-in model 
DNA (upper: T1M with 5mCG, positive and negative strands are separately 
displayed, bottom left: T2H with a single 5hmCG site, bottom right: T3MH with 
both 5mC site and 5hmCG site at known position). C-to-T is colored in red for 
positive strands, and G-to-A is colored in green for negative strands, respectively. 
Conversion rates are estimated from all the modified cytosines of spike-in model 
DNA. i, Nuclei clumps and resolved single nuclei suspension after brief sonication 
under bright field microscope. Experiment was performed once. Scale bars, 100 
µm. j, Enrichment analysis of genome coverage by SIMPLE-seq and DNase-seq on 

DHS (DNase I hypersensitive sites). k, A table showing tagmentation efficiency 
under different Tn5 reaction conditions, including Tn5 with hyperactive 
mutations, working concentrations and reaction buffers; right-sided showing the 
fragments analysis result under optimal condition. l-n, Standard curves  
for mixed oligo DNA with (l) 5mC and C, (m) 5hmC and C, (n) 5mC and 5hmC, were 
plotted based on gradient mixing ratios (0:10; 2:8; 4:6; 6:4; 8:2; 10:0). o, C-to-T 
mutation rate estimated from 10-kb non-overlap bins across the whole genome. 
For both boxplots, hinges were drawn from the 25th to 75th percentiles, with 
the middle line denoting the median, whiskers with maximum 2× interquartile 
range (IQR). For 5mC, minima = 1.12%, maxima = 1.47%; for 5hmC, minima = 
0.75%, maxima = 2.43%. 5mC, n = 156,755; 5hmC, n = 159,962. p and q, Scatter plot 
showing (p) the number of 5hmC reads mapped to human and mouse genome 
and (q) the fraction of 5mC and 5hmC reads mapped to human and mouse 
genome in each cell from the species-mixing experiment with twin axes.  
r, Stacked barplot showing the fraction of reads mapped to the reference genome 
and assigned to 5mC, 5hmC, or cannot be assigned. s-v, Comparisons between 
SIMPLE-seq and published single-cell and bulk 5mC and 5hmC sequencing 
methods: (s) fraction of mappable reads, (t) the number of 5mCG sites detected 
and total sequenced reads in each study, and (u) the number of 5hmCG sites 
detected and total sequenced reads in each study, (v) Dot plot showing the 
average number of covered CGs and sequenced reads for each cell in each study. 
w, Line plots showing the number of unique mapped reads or CG dinucleotides 
with at different sequenced read depths per cell in each study.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Joint analysis of 5mC and 5hmC from single cells. 
a, Barplot showing the enrichment of 5mCG and 5hmCG sites detected by 
SIMPLE-seq, WGBS and TAB-seq over different genomic regions. b, Boxplots 
showing the 5mC or 5hmC modification levels on different genomic regions 
from bisulfite sequencing, TAB-seq and SIMPLE-seq. For all boxplots, hinges 
were drawn from the 25th to 75th percentiles, with the middle line denoting 
the median, whiskers with maximum 2× IQR. The minima/maxima/numbers of 
elements of all boxplots: 60.76%/74.60%/157,324 (Alu,(1)), 58.52%/68.61%/137,869 
(Alu,(2)), 3.71%/10.71%/37,810 (Alu,(3)), 0.00%/10.91%/8,332 (Alu,(4)), 
14.71%/67.84%/5,828 (CGI,(1)), 12.36%/54.72%/3,662 (CGI,(2)), 
1.96%/5.87%/1,059 (CGI,(3)), 1.45%/5.24%/304 (CGI,(4)), 6.02%/72.62%/45,014 
(Intron,(1)), 8.48%/79.35%/30,294 (Intron,(2)), 4.19%/5.01%/7,333 
(Intron,(3)), 3.41%/4.85%/1,669 (Intron,(4)), 70.19%/75.69%/124,777 
(L1,(1)), 64.68%/94.66%/103,247 (L1,(2)), 6.89%/10.32%/22,350 
(L1,(3)), 4.90%/8.53%/5,414 (L1,(4)), 67.40%/75.88%/26,295 (L2,(1)), 
68.26%/87.71%/18,819 (L2,(2)), 1.86%/7.30%/4,342 (L2,(3)), 2.20%/6.31%/875 
(L2,(4)), 64.16%/73.22%/909 (LCP,(1)), 57.34%/79.78%/739 (LCP,(2)), 
2.88%/10.32%/171 (LCP,(3)), 2.56%/7.71%/62 (LCP,(4)), 70.15%/75.10%/194,933 
(LINE,(1)), 65.93%/81.40%/177,226 (LINE,(2)),3.79%/7.49%/34,376 
(LINE,(3)), 3.99%/5.61%/9,412 (LINE,(4)), 68.59%/75.74%/189,543 
(LTR,(1)), 60.01%/72.15%/170,132 (LTR,(2)), 2.85%/7.75%/32,147 (LTR,(3)), 
3.24%/5.59%/10,073 (LTR,(4)), 68.60%/74.58%/47,771 (MIR,(1)), 
66.88%/85.86%/30,355 (MIR,(2)), 2.88%/9.75%/7,707 (MIR,(3)), 0.00%/7.62%/1,520 
(MIR,(4)), 62.68%/74.58%/325,867 (SINE,(1)), 58.25%/73.48%/302,881 
(SINE,(2)), 4.93%/9.37%/56,712 (SINE,(3)), 0.00%/9.52%/19,715 (SINE,(4)), 
62.82%/79.57%/4,651 (H3K9me3,(1)), 48.15%/94.31%/3,514 (H3K9me3,(2)), 
3.79%/12.09%/862 (H3K9me3,(3)), 0.00%/11.97%/226 (H3K9me3,(4)), 
14.28%/69.99%/21,711 (DNase,(1)), 12.70%/70.84%/15,340 (DNase,(2)), 

0.00%/10.11%/3,961 (DNase,(3)), 0.00%/6.10%/973 (DNase,(4)). c, Venn plot 
showing the 5mCG sites overlap between SIMPLE-seq and TAPS. P-value, two-
sided Fisher’s exact test. d, Venn plot showing the 5hmCG sites overlap between 
SIMPLE-seq and TAB-seq. P-value, two-sided Fisher’s exact test. e, Stacked 
barplot showing the fraction of called 5hmC sites overlapped with 5mC (grey, 
5hmC-shared) and 5hmC-sites did not overlapped with a called 5mC sites (blue, 
5hmC-only). f, Boxplot showing the 5hmC modification levels of 5mC-5hmC 
shared sites and the 5hmC-only sites. For both boxplots, hinges were drawn from 
the 25th to 75th percentiles, with the middle line denoting the median, whiskers 
with maximum 2× IQR. For 5mC-5hmC shared sites, minima = 0.01, maxima = 
1.00, sites number n = 622,323, and for 5hmC-only sites, minima = 0.01, maxima 
= 1.00, sites number n = 435,143. P-value, two-sided Fisher’s exact test. g, Barplot 
showing the enrichment of 5mC-5hmC shared sites and the 5hmC-only sites over 
different genomic regions. h, Barplot showing the relative enrichment of 5hmC-
only sites over 5mC-5hmC shared sites on different genomic regions. i-k, UMAP 
embedding showing cells based on their (i) 5mCG, (j) 5mCHG and (k) 5hmCHG 
levels (in 100-kb non-overlapping bins). Each dot represents a single cell and 
is colored according to its original identity. l, Assignment of 2i mES cells and 
serum mES cells into two distinct clusters grouped by unsupervised clustering. 
m, Silhouette plot to evaluate the degree of separation of the clusters based on 
5mC or 5hmC. n, Line plots showing the cumulated coverages of 10-kb non-
overlapping bins with different depths for 5mC (green) and 5hmC (blue) from 
different numbers of single cells. The shadowed area showing the error ranges 
from 5 randomly sampled cell sets. o, Smoothed line plots showing the 5hmCG 
levels around genic regions of genes with different expression levels (using the 
smooth.spline function with parameter df = 30). p-q, Line plots showing the 
relationships between promoter 5mCG and 5hmCG modification levels with gene 
expression levels in (p) 2i mES cells, (q) serum mES cells.
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Extended Data Fig. 3 | Analysis of 5mC and 5hmC from the same molecules 
revealed multiple 5hmC types. a, Heat maps showing the 5mCHG and 5hmCHG 
TF motif enrichments along with TF expression level during mESC 2i state to 
serum state transition. b, Dotplots showing promoter methylation levels for 
genes associated with cell proliferation during mESC 2i to serum state transition. 
c, Cytosine modification entropies in single cells. Each dot represents a single 
cell and is colored and ordered according to its pseudotime score. Grey dots 
are background entropy levels estimated by shuffled the cell barcodes of called 
modification sites. d, Violin plots showing the fraction of 5mC and 5hmC reads 
with paired modality in single cells. For both Violin plots, hinges were drawn from 
the 25th to 75th percentiles, with the middle line denoting the median, whiskers 
with maximum 2× IQR. For 5mC modality, minima = 1.94%, maxima = 9.12%; for 
5hmC modality, minima = 6.93%, maxima = 20.75%; n = 300 randomly sampled 

cells. e, Barplot showing the distributions of 5hmCG sites with different fractions 
of cells with detected 5mCG-associated 5hmCG sites. False positive detection 
rates (FDR) based on the fraction of averaged false detected (Type 2) sites from 
shuffled groups in total detected sites (FDR = 0.0467 was selected).  
f, UMAP embedding showing 5hmC levels of different types in single cells. Each 
dot represents a single cell and is colored according to the average 5hmC level.  
g, Top enriched GREAT GO terms for different types of 5hmCG sites. P-value, one-
sided Fisher’s exact test. h, Histograms and heatmaps showing the relationship 
between two types of 5hmCG with mESC DNase-seq signals from ENCODE 
(ENCSR000CMW). i, Fraction of Type 1 and Type 2 5hmCGs in detected from 
low-entropy (0–75%) or high-entropy (75%-100%) cells. j, Barplot showing the 
enrichment of 5hmCG sites detected in low-entropy or high-entropy cells over 
different genomic regions.
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Extended Data Fig. 4 | SIMPLE-seq generates cell-type-specific 5mC and 5hmC 
profiles from human PBMC. a, Heatmap showing the gene expression and 
promoter methylation levels of marker genes for the five major cell types.  
b and c, UMAP embedding showing the single-cell clustering based on (b) 5mCHG 
and (c) 5hmCHG levels (in 100-kb non-overlapping bins) from PBMC. Each dot 
represents a single cell and is colored according to its annotation based on 
5mCG.d, Silhouette plot showing the degree of separation of the PBMC clusters 
based on 5mC, 5hmC or joint 5mCG-5hmCG. e, UMAP embedding showing 
the single-cell clustering based on joint 5mCG-5hmCG levels (in 100-kb non-
overlapping bins) from PBMC. Each dot represents a single cell and is colored 
according to its annotation based on 5mCG. f and g, UMAP embedding showing 

the single-cell clustering based on (f) 5mCG levels of H3K4me1 regions (g) 5hmCG 
levels of H3K4me1 regions from PBMC. Each dot represents a single cell and 
is colored according to its annotation based on 5mCG. h, Violin plots showing 
the modification levels of 5mCG, 5hmCG, 5mCHG and 5hmCHG in different cell 
types. i, The heatmap showing the numbers of pairwise differentially methylated 
(5mCG) regions across cell types (in 5-kb non-overlapping bins). j, Heatmap 
showing the methylation levels of 5mCG DMRs of a representative group  
(CD4+ T cells and Monocytes). k-m, The enrichment analysis of (k) know motifs, 
(l) top enriched de novo motifs, P-value, one-sided Fisher’s exact test, and (m) top 
enriched GREAT GO terms, P-value, one-sided Fisher’s exact test.

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-024-02148-9

Extended Data Fig. 5 | Comparison of conserved and differential cytosine 
states among immune cells. a, Violin plots showing the genomic coverages of 
the 10 cytosine states. b, Heatmap showing the enrichment of different cytosine 
state regions around TSS and TES sites. c-e, Scatter plot showing the fraction of 

genome regions overlapped with peaks of different histone marks in conserved 
and differential (c) E5 (d) E7 and (e) E9 state regions. P-value, two-sided t-test.  
f, Top enriched GREAT GO terms for conserved and differential regions of E5, E7 
and E9 in representative cell types. P-value, two-sided t-test.
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Extended Data Fig. 6 | SIMPLE-seq generates cell-type-specific 5mC and 5hmC 
profiles from mouse brain. a, Violin plots showing the fraction of reads mapped 
to reference mouse genome for 5mC and 5hmC in SIMPLE-seq (this study) and 
Joint-snhmC-seq (GSE236798) datasets. b, Violin plots showing the numbers 
of unique reads per cell for 5mC and 5hmC in SIMPLE-seq (this study) and Joint-
snhmC-seq (GSE236798) datasets. For fair comparisons, Joint-snhmC-seq dataset 
was down sampled to the same per-cell depth in SIMPLE-seq. Data are presented 
as 57,563 ± 4,260 (SIMPLE-seq, 5mC), 35,283 ± 552 ( joint-snhmC-seq, 5mC), 39,374 
± 4,553 (SIMPLE-seq, 5hmC), 20,538 ± 565 ( joint-snhmC-seq, 5hmC). Cell number 
n = 4,767 (SIMPLE-seq, 5mC and 5hmC), n = 552 ( joint-snhmC-seq, 5mC and 
5hmC). c and d, UMAP embedding showing the single-cell clustering based on (c) 
5mCG and (d) 5hmCG levels (in 100-kb non-overlapping bins) from mouse brain 

cells. Each dot represents a single cell and is colored according to its annotation 
based on joint 5mCG-5hmCG clustering. e, Silhouette plot showing the degree 
of separation of the mouse brain cell clusters based on 5mC, 5hmC or joint 
5mCG-5hmCG. f, Dot plots showing the genebody 5hmCG levels of representative 
marker genes in the detected cell types. g, The distribution of H3K4me1 and 
H3K27me3 reads densities around the 5mCG sites or 5hmCG sites from EXC1.  
h, Line plots showing the relationships between gene body 5mCG and 5hmCG 
levels with gene expression levels in EXC2 and ASC1 cell types i, Heatmap showing 
the 5mCG modification levels of cell type-specific 5mCG across the 11 cell types.  
j, Top enriched de novo motifs (left) and top enriched GO terms (right) for each 
cell type were also shown. P-value, one-sided Fisher’s exact test.
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