Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The challenges and promise of sweat sensing

Abstract

The potential of monitoring biomarkers in sweat for health-related applications has spurred rapid growth in the field of wearable sweat sensors over the past decade. Some of the key challenges have been addressed, including measuring sweat-secretion rate and collecting sufficient sample volumes for real-time, continuous molecular analysis without intense exercise. However, except for assessment of cystic fibrosis and regional nerve function, the ability to accurately measure analytes of interest and their physiological relevance to health metrics remain to be determined. Although sweat is not a crystal ball into every aspect of human health, we expect sweat measurements to continue making inroads into niche applications involving active sweating, such as hydration monitoring for athletes and physical laborers and later for medical and casual health monitoring of relevant drugs and hormones.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sweat gland structure and physiology.
Fig. 2: Commercial sweat-monitoring devices.
Fig. 3: Growth of the sweat-sensing field over the last few decades.

Similar content being viewed by others

References

  1. Vinik, A. I., Nevoret, M., Casellini, C. & Parson, H. Neurovascular function and sudorimetry in health and disease. Curr. Diab. Rep. 13, 517–532 (2013).

    Google Scholar 

  2. Heikenfeld, J. et al. Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol. 37, 407–419 (2019).

    Article  PubMed  CAS  Google Scholar 

  3. Baker, L. B. & Wolfe, A. S. Physiological mechanisms determining eccrine sweat composition. Eur. J. Appl. Physiol. 120, 719–752 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. LeGrys, V., Briscoe, D. & McColley, S. Sweat Testing: Specimen Collection and Quantitative Chloride Analysis; Approved Guideline 4th edn (Clinical and Laboratory Standards Institute, 2019).

  5. Hussain, J. N., Mantri, N. & Cohen, M. M. Working up a good sweat — the challenges of standardising sweat collection for metabolomics analysis. Clin. Biochem. Rev. 38, 13–34 (2017).

    PubMed  PubMed Central  Google Scholar 

  6. Cizza, G. et al. Elevated neuroimmune biomarkers in sweat patches and plasma of premenopausal women with major depressive disorder in remission: the POWER Study. Biol. Psychiatry 64, 907–911 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Sempionatto, J. R., Moon, J.-M. & Wang, J. Touch-based fingertip blood-free reliable glucose monitoring: personalized data processing for predicting blood glucose concentrations. ACS Sens. 6, 1875–1883 (2021).

    Article  PubMed  CAS  Google Scholar 

  8. Torrente-Rodríguez, R. M. et al. Investigation of cortisol dynamics in human sweat using a graphene-based wireless mHealth system. Matter 2, 921–937 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Busch, R. On the history of cystic fibrosis. Acta Univ. Carol. Med. 36, 13–15 (1990).

    CAS  Google Scholar 

  10. Pérez-Frías, J. et al. The history of cystic fibrosis. Open J. Pediatr. Child Health 4, 001–006 (2019).

    Google Scholar 

  11. Quinton, P. M. Physiological basis of cystic fibrosis: a historical perspective. Physiol. Rev. 79, S3–S22 (1999).

    Article  PubMed  CAS  Google Scholar 

  12. Darling, R. C., Disant’agnese, P. A., Perera, G. A. & Andersen, D. H. Electrolyte abnormalities of the sweat in fibrocystic disease of the pancreas. Am. J. Med. Sci. 225, 67–70 (1953).

    Article  PubMed  CAS  Google Scholar 

  13. Barbero, G. J., Kim, I. C. & Mcgavran, J. A simplified technique for the sweat test in the diagnosis of fibrocystic disease of the pancreas. Pediatrics 18, 189–192 (1956).

    Article  PubMed  CAS  Google Scholar 

  14. Gibson, E. & Cooke, E. A test for concentration of electrolytes in sweat in cystic fibrosis of the pancreas utilizing pilocarpine by iontophoresis. Pediatrics 23, 545–549 (1959).

  15. Webster, H. L. & Rundell, C. A. Laboratory diagnosis of cystic fibrosis. Crit. Rev. Clin. Lab. Sci. 18, 313–338 (1982).

    Article  Google Scholar 

  16. Sato, K. in Reviews of Physiology, Biochemistry and Pharmacology Vol. 79 (eds Adrian, R. H. et al.) 51–131 (Springer, 1977).

  17. Sato, K., Feibleman, C. & Dobson, R. L. The electrolyte composition of pharmacologically and thermally stimulated sweat: a comparative study. J. Invest. Dermatol. 55, 433–438 (1970).

    CAS  Google Scholar 

  18. Sato, K. & Dobson, R. L. Regional and individual variations in the function of the human eccrine sweat gland. J. Invest. Dermatol. 54, 443–449 (1970).

    CAS  Google Scholar 

  19. Sato, K. Sweat induction from an isolated eccrine sweat gland. Am. J. Physiol. 225, 1147–1152 (1973).

    Article  PubMed  CAS  Google Scholar 

  20. Drexelius, A., Fehr, D., Vescoli, V., Heikenfeld, J. & Bonmarin, M. A simple non-contact optical method to quantify in-vivo sweat gland activity and pulsation. In IEEE Transactions on Biomedical Engineering 2638–2645 (IEEE, 2022).

  21. Yanagawa, S., Yokozeki, H. & Sato, K. Origin of periodic acid–Schiff-reactive glycoprotein in human eccrine sweat. J. Appl. Physiol. 60, 1615–1622 (1986).

    Article  PubMed  CAS  Google Scholar 

  22. Nicolaidis, S. & Sivadjian, J. High-frequency pulsatile discharge of human sweat glands: myoepithelial mechanism. J. Appl. Physiol. 32, 86–90 (1972).

    Article  PubMed  CAS  Google Scholar 

  23. Ogawa, T. & Sugenoya, J. Pulsatile sweating and sympathetic sudomotor activity. Jpn. J. Physiol. 43, 275–289 (1993).

    Article  PubMed  CAS  Google Scholar 

  24. Schwartz, I. L. & Thaysen, J. H. Excretion of sodium and potassium in human sweat. J. Clin. Invest. 35, 114–120 (1956).

  25. Baker, L. B. Physiology of sweat gland function: the roles of sweating and sweat composition in human health. Temperature 6, 211–259 (2019).

    Article  Google Scholar 

  26. Quinton, P. M. Cystic fibrosis: lessons from the sweat gland. Physiology 22, 212–225 (2007).

    Article  PubMed  CAS  Google Scholar 

  27. Nadel, E. R. Control of sweating rate while exercising in the heat. Med. Sci. Sports 11, 31–35 (1979).

    PubMed  CAS  Google Scholar 

  28. Nadel, E. R., Bullard, R. W. & Stolwijk, J. A. Importance of skin temperature in the regulation of sweating. J. Appl. Physiol. 31, 80–87 (1971).

    Article  PubMed  CAS  Google Scholar 

  29. Shibasaki, M. & Crandall, C. G. Mechanisms and controllers of eccrine sweating in humans. Front. Biosci. (Schol. Ed.) 2, 685–696 (2010).

    PubMed  Google Scholar 

  30. Shibasaki, M., Secher, N. H., Selmer, C., Kondo, N. & Crandall, C. G. Central command is capable of modulating sweating from non-glabrous human skin. J. Physiol. 553, 999–1004 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Hu, Y., Converse, C., Lyons, M. C. & Hsu, W. H. Neural control of sweat secretion: a review. Br. J. Dermatol. 178, 1246–1256 (2018).

    Article  PubMed  CAS  Google Scholar 

  32. Simmers, P., Li, S. K., Kasting, G. & Heikenfeld, J. Prolonged and localized sweat stimulation by iontophoretic delivery of the slowly-metabolized cholinergic agent carbachol. J. Dermatol. Sci. 89, 40–51 (2018).

    Article  PubMed  CAS  Google Scholar 

  33. Souza, S. L., Graça, G. & Oliva, A. Characterization of sweat induced with pilocarpine, physical exercise, and collected passively by metabolomic analysis. Skin Res. Technol. 24, 187–195 (2018).

    Article  PubMed  CAS  Google Scholar 

  34. Sato, K., Kang, W. H., Saga, K. & Sato, K. T. Biology of sweat glands and their disorders. I. Normal sweat gland function. J. Am. Acad. Dermatol. 20, 537–563 (1989).

    Article  PubMed  CAS  Google Scholar 

  35. Sonner, Z. et al. The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications. Biomicrofluidics 9, 031301 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Sato, F., Takemura, T., Hibino, T. & Sato, K. Lectin binding glycoproteins in human eccrine sweat. J. Invest. Dermatol. 88, 515–515 (1987).

  37. Macroduct Sweat Collection System (Model 3700) Instruction/Service Manual (Wescor, 2004).

  38. Huestis, M. A. et al. Sweat testing for cocaine, codeine and metabolites by gas chromatography–mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 733, 247–264 (1999).

    Article  PubMed  CAS  Google Scholar 

  39. Brueck, A., Iftekhar, T., Stannard, A. B., Yelamarthi, K. & Kaya, T. A real-time wireless sweat rate measurement system for physical activity monitoring. Sensors 18, 533 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Katchman, B. A., Zhu, M., Blain Christen, J. & Anderson, K. S. Eccrine sweat as a biofluid for profiling immune biomarkers. Proteomics Clin. Appl. 12, 1800010 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Matzeu, G., Fay, C., Vaillant, A., Coyle, S. & Diamond, D. A wearable device for monitoring sweat rates via image analysis. IEEE Trans. Biomed. Eng. 63, 1672–1680 (2016).

    Article  PubMed  Google Scholar 

  42. Mayaudon, H., Miloche, P.-O. & Bauduceau, B. A new simple method for assessing sudomotor function: relevance in type 2 diabetes. Diabetes Metab. 36, 450–454 (2010).

    Article  PubMed  CAS  Google Scholar 

  43. Baker, L. B. et al. Skin-interfaced microfluidic system with personalized sweating rate and sweat chloride analytics for sports science applications. Sci. Adv. 6, eabe3929 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Baker, L. B. et al. Sweating rate and sweat chloride concentration of elite male basketball players measured with a wearable microfluidic device versus the standard absorbent patch method. Int. J. Sport Nutr. Exerc. Metab. 1, 342–349 (2022).

    Article  Google Scholar 

  45. Jia, W. et al. Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal. Chem. 85, 6553–6560 (2013).

    Article  PubMed  CAS  Google Scholar 

  46. Guinovart, T. J., Bandodkar, A. R., Windmiller, J. J., Andrade, F. & Wang, J. A potentiometric tattoo sensor for monitoring ammonium in sweat. Analyst 138, 7031–7038 (2013).

    Article  PubMed  CAS  Google Scholar 

  47. Bandodkar, A. J. et al. Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring. Biosens. Bioelectron. 54, 603–609 (2014).

    Article  PubMed  CAS  Google Scholar 

  48. Huang, X. et al. Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat. Small 10, 3083–3090 (2014).

    Article  PubMed  CAS  Google Scholar 

  49. Rose, D. P. et al. Adhesive RFID sensor patch for monitoring of sweat electrolytes. IEEE Trans. Biomed. Eng. 62, 1457–1465 (2015).

    Article  PubMed  Google Scholar 

  50. Glennon, T. et al. ‘SWEATCH’: a wearable platform for harvesting and analysing sweat sodium content. Electroanalysis 28, 1283–1289 (2016).

    Article  CAS  Google Scholar 

  51. Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Koh, A. et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 8, 366ra165 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Choi, J., Kang, D., Han, S., Kim, S. B. & Rogers, J. A. Thin, soft, skin-mounted microfluidic networks with capillary bursting valves for chrono-sampling of sweat. Adv. Healthc. Mater. 6, 1601355 (2017).

    Article  Google Scholar 

  54. Nyein, H. Y. Y. et al. A wearable microfluidic sensing patch for dynamic sweat secretion analysis. ACS Sens. 3, 944–952 (2018).

    Article  PubMed  CAS  Google Scholar 

  55. Hauke, A. et al. Complete validation of a continuous and blood-correlated sweat biosensing device with integrated sweat stimulation. Lab Chip 18, 3750–3759 (2018).

    CAS  Google Scholar 

  56. Nyein, H. Y. Y. et al. A wearable patch for continuous analysis of thermoregulatory sweat at rest. Nat. Commun. 12, 1823 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Tai, L.-C. et al. Methylxanthine drug monitoring with wearable sweat sensors. Adv. Mater. 30, 1707442 (2018).

    Article  Google Scholar 

  58. Tai, L.-C. et al. Wearable sweat band for noninvasive levodopa monitoring. Nano Lett. 19, 6346–6351 (2019).

    CAS  Google Scholar 

  59. Ruwe, T. Diverse drug classes partition into human sweat: implications for both sweat fundamentals and for therapeutic drug monitoring. Ther. Drug Monit. 10.1097/FTD.0000000000001110 (2023).

  60. Harshman, S. W. et al. The proteomic and metabolomic characterization of exercise-induced sweat for human performance monitoring: a pilot investigation. PLoS ONE 13, e0203133 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kwon, K. et al. An on-skin platform for wireless monitoring of flow rate, cumulative loss and temperature of sweat in real time. Nat. Electron. 4, 302–312 (2021).

    Article  Google Scholar 

  62. Bandodkar, A. J. et al. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci. Adv. 5, eaav3294 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Heikenfeld, J. Non-invasive analyte access and sensing through eccrine sweat: challenges and outlook circa 2016. Electroanalysis 28, 1242–1249 (2016).

    Article  CAS  Google Scholar 

  64. Moyen, N. E. et al. Accuracy of algorithm to non-invasively predict core body temperature using the Kenzen wearable device. Int. J. Environ. Res. Public Health 18, 13126 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Tang, W. et al. Touch-based stressless cortisol sensing. Adv. Mater. 33, 2008465 (2021).

    Article  CAS  Google Scholar 

  66. Lin, S. et al. Natural perspiration sampling and in situ electrochemical analysis with hydrogel micropatches for user-identifiable and wireless chemo/biosensing. ACS Sens. 5, 93–102 (2020).

    Article  PubMed  CAS  Google Scholar 

  67. Paul, B., Demuru, S., Lafaye, C., Saubade, M. & Briand, D. Printed iontophoretic-integrated wearable microfluidic sweat-sensing patch for on-demand point-of-care sweat analysis. Adv. Mater. Technol. 6, 2000910 (2021).

    Article  CAS  Google Scholar 

  68. Sonner, Z., Wilder, E., Gaillard, T., Kasting, G. & Heikenfeld, J. Integrated sudomotor axon reflex sweat stimulation for continuous sweat analyte analysis with individuals at rest. Lab Chip 17, 2550–2560 (2017).

    CAS  Google Scholar 

  69. Peng, R. et al. A new oil/membrane approach for integrated sweat sampling and sensing: sample volumes reduced from μL’s to nL’s and reduction of analyte contamination from skin. Lab Chip 16, 4415–4423 (2016).

    CAS  Google Scholar 

  70. Reeder, J. T. et al. Waterproof, electronics-enabled, epidermal microfluidic devices for sweat collection, biomarker analysis, and thermography in aquatic settings. Sci. Adv. 5, eaau6356 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Brebner, D. F. & Kerslake, D. McK. The time course of the decline in sweating produced by wetting the skin. J. Physiol. 175, 295–302 (1964).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Twine, N. B. et al. Open nanofluidic films with rapid transport and no analyte exchange for ultra-low sample volumes. Lab Chip 18, 2816–2825 (2018).

    CAS  Google Scholar 

  73. Baker, L. B. Sweating rate and sweat sodium concentration in athletes: a review of methodology and intra/interindividual variability. Sports Med. 47, 111–128 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Yuan, Z. et al. A multi-modal sweat sensing patch for cross-verification of sweat rate, total ionic charge, and Na+ concentration. Lab Chip 19, 3179–3189 (2019).

    CAS  Google Scholar 

  75. Wang, S. et al. An unconventional vertical fluidic-controlled wearable platform for synchronously detecting sweat rate and electrolyte concentration. Biosens. Bioelectron. 210, 114351 (2022).

    Article  PubMed  CAS  Google Scholar 

  76. Montain, S. J., Latzka, W. A. & Sawka, M. N. Control of thermoregulatory sweating is altered by hydration level and exercise intensity. J. Appl. Physiol. 79, 1434–1439 (1995).

    Article  PubMed  CAS  Google Scholar 

  77. Sawka, M. N. & Montain, S. J. Fluid and electrolyte supplementation for exercise heat stress. Am. J. Clin. Nutr. 72, 564S–572S (2000).

    Article  PubMed  CAS  Google Scholar 

  78. Nyein, H. Y. Y. et al. Regional and correlative sweat analysis using high-throughput microfluidic sensing patches toward decoding sweat. Sci. Adv. 5, eaaw9906 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Zhao, F. J. et al. Ultra-simple wearable local sweat volume monitoring patch based on swellable hydrogels. Lab Chip 20, 168–174 (2019).

    Google Scholar 

  80. Doolittle, J., Walker, P., Mills, T. & Thurston, J. Hyperhidrosis: an update on prevalence and severity in the United States. Arch. Dermatol. Res. 308, 743–749 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Korpelainen, J. T., Sotaniemi, K. A. & Myllylä, V. V. Asymmetric sweating in stroke: a prospective quantitative study of patients with hemispheral brain infarction. Neurology 43, 1211–1214 (1993).

    Article  PubMed  CAS  Google Scholar 

  82. Foster, K. G., Hey, E. N. & O’Connell, B. Sweat function in babies with defects of the central nervous system. Dev. Med. Child Neurol. 11, 94 (2008).

    Google Scholar 

  83. Cheshire, W. P. & Freeman, R. Disorders of sweating. Semin. Neurol. 23, 399–406 (2003).

    Article  PubMed  Google Scholar 

  84. Harker, M. Psychological sweating: a systematic review focused on aetiology and cutaneous response. Skin Pharmacol. Physiol. 26, 92–100 (2013).

    Article  PubMed  CAS  Google Scholar 

  85. Berglund, L. G. Comfort and humidity. ASHRAE J. 40, 35–41 (1998).

    Google Scholar 

  86. Rousseau, C. R. & Bühlmann, P. Calibration-free potentiometric sensing with solid-contact ion-selective electrodes. TrAC Trends Anal. Chem. 140, 116277 (2021).

    Article  CAS  Google Scholar 

  87. Bhide, A., Muthukumar, S., Saini, A. & Prasad, S. Simultaneous lancet-free monitoring of alcohol and glucose from low-volumes of perspired human sweat. Sci. Rep. 8, 6507 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Arroyo-Currás, N., Dauphin-Ducharme, P., Scida, K. & Chávez, J. L. From the beaker to the body: translational challenges for electrochemical, aptamer-based sensors. Anal. Methods 12, 1288–1310 (2020).

    Article  Google Scholar 

  89. Potyrailo, R. A., Conrad, R. C., Ellington, A. D. & Hieftje, G. M. Adapting selected nucleic acid ligands (aptamers) to biosensors. Anal. Chem. 70, 3419–3425 (1998).

    Article  PubMed  CAS  Google Scholar 

  90. Zhang, F., Xue, J., Shao, J. & Jia, L. Compilation of 222 drugs’ plasma protein binding data and guidance for study designs. Drug Discov. Today 17, 475–485 (2012).

    Article  PubMed  CAS  Google Scholar 

  91. Yuan, Y. et al. Oil-membrane protection of electrochemical sensors for fouling- and pH-insensitive detection of lipophilic analytes. ACS Appl. Mater. Interfaces 13, 53553–53563 (2021).

    Article  PubMed  CAS  Google Scholar 

  92. Shaver, A., Curtis, S. D. & Arroyo-Currás, N. Alkanethiol monolayer end groups affect the long-term operational stability and signaling of electrochemical, aptamer-based sensors in biological fluids. ACS Appl. Mater. Interfaces 12, 11214–11223 (2020).

    Article  PubMed  CAS  Google Scholar 

  93. Watkins, Z., Karajić, A., Young, T., White, R. & Heikenfeld, J. Week-long operation of electrochemical aptamer sensors: new insights into self-assembled monolayer degradation mechanisms and solutions for stability in biofluid at body temperature. ACS Sens. 8, 1119–1131 (2023).

  94. Xu, J. & Lee, H. Anti-biofouling strategies for long-term continuous use of implantable biosensors. Chemosensors 8, 66 (2020).

    Article  CAS  Google Scholar 

  95. Li, H., Dauphin-Ducharme, P., Ortega, G. & Plaxco, K. W. Calibration-free electrochemical biosensors supporting accurate molecular measurements directly in undiluted whole blood. J. Am. Chem. Soc. 139, 11207–11213 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Das, S. K., Nayak, K. K., Krishnaswamy, P. R., Kumar, V. & Bhat, N. Review—electrochemistry and other emerging technologies for continuous glucose monitoring devices. ECS Sens. Plus 1, 031601 (2022).

    Article  Google Scholar 

  97. Troudt, B. K., Rousseau, C. R., Dong, X. I. N., Anderson, E. L. & Bühlmann, P. Recent progress in the development of improved reference electrodes for electrochemistry. Anal. Sci. 38, 71–83 (2022).

    Article  PubMed  CAS  Google Scholar 

  98. Pirovano, P. et al. A wearable sensor for the detection of sodium and potassium in human sweat during exercise. Talanta 219, 121145 (2020).

    Article  PubMed  CAS  Google Scholar 

  99. Forlenza, G. P., Kushner, T., Messer, L. H., Wadwa, R. P. & Sankaranarayanan, S. Factory-calibrated continuous glucose monitoring: how and why it works, and the dangers of reuse beyond approved duration of wear. Diabetes Technol. Ther. 21, 222–229 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Dautta, M. et al. Tape-free, digital wearable band for exercise sweat rate monitoring. Adv. Mater. Technol. 8, 2201187 (2023).

  101. Emaminejad, S. et al. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proc. Natl Acad. Sci. USA 114, 4625–4630 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Klous, L., de Ruiter, C. J., Scherrer, S., Gerrett, N. & Daanen, H. A. M. The (in)dependency of blood and sweat sodium, chloride, potassium, ammonia, lactate and glucose concentrations during submaximal exercise. Eur. J. Appl. Physiol. 121, 803–816 (2021).

    Article  PubMed  CAS  Google Scholar 

  103. Wiorek, A., Parrilla, M., Cuartero, M. & Crespo, G. A. Epidermal patch with glucose biosensor: pH and temperature correction toward more accurate sweat analysis during sport practice. Anal. Chem. 92, 10153–10161 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Francis, J., Stamper, I., Heikenfeld, J. & Gomez, E. F. Digital nanoliter to milliliter flow rate sensor with in vivo demonstration for continuous sweat rate measurement. Lab Chip 19, 178–185 (2019).

    CAS  Google Scholar 

  105. Moon, J.-M. et al. Non-invasive sweat-based tracking of l-dopa pharmacokinetic profiles following an oral tablet administration. Angew. Chem. Int. Ed. Engl. 133, 19222–19226 (2021).

    Article  Google Scholar 

  106. Montanga, W., Kligman, A. M. & Carlisle, K. S. Atlas of Normal Human Skin (Springer, 1992).

  107. Illigens, B. M. W. & Gibbons, C. H. in Handbook of Clinical Neurology (eds Levin, K. H. & Chauvel, P.) Vol. 160, 419–433 (Elsevier, 2019).

Download references

Acknowledgements

A.J. acknowledges support from the NSF NASCENT Center, the Berkeley Sensors and Actuators Center and the Bakar Fellowship. J.H. acknowledges support from the US Air Force Office of Scientific Research (USAF contract no. FA9550-20-1-0117), a the National Science Foundation CBET award (2125056) and a National Science Foundation ECCS award (2025720). C.M. acknowledges support from the US Air Force Office of Scientific Research (USAF contract no. FA955-20-1-0117-Sub 013176-002), the National Institutes of Health (NIDDK R21/33 DK128711) and the Ross Mosier Cystic Fibrosis Research Laboratories Gift Fund. N.D. acknowledges support from the National Defense Science and Engineering Graduate Fellowship Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jason Heikenfeld, Carlos Milla or Ali Javey.

Ethics declarations

Competing interests

J.H. has multiple patents that have been licensed to entities pursuing commercialization of sweat biosensing devices.

Peer review information

Nature Biotechnology thanks Chwee Teck Lim, Jinghua Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1 and Table 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davis, N., Heikenfeld, J., Milla, C. et al. The challenges and promise of sweat sensing. Nat Biotechnol (2024). https://doi.org/10.1038/s41587-023-02059-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41587-023-02059-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing