Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Translocation of linearized full-length proteins through an engineered nanopore under opposing electrophoretic force

Abstract

Nanopores have recently been used to identify and fingerprint proteins. However, because proteins, unlike DNA, do not have a uniform charge, the electrophoretic force cannot in general be used to translocate or linearize them. Here we show that the introduction of sets of charges in the lumen of the CytK nanopore spaced by ~1 nm creates an electroosmotic flow that induces the unidirectional transport of unstructured natural polypeptides against a strong electrophoretic force. Molecular dynamics simulations indicate that this electroosmotic-dominated force has a strength of ~20 pN at −100 mV, which is similar to the electric force on single-stranded DNA. Unfolded polypeptides produce current signatures as they traverse the nanopore, which may be used to identify proteins. This approach can be used to translocate and stretch proteins for enzymatic and non-enzymatic protein identification and sequencing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Engineering and EOF.
Fig. 2: Translocation of unfolded substrates using engineered nanopores.
Fig. 3: EOF and force on peptide estimated by MD.
Fig. 4: Translocation of unfolded proteins across 2E-4D-CytK nanopores.

Similar content being viewed by others

Data availability

Data and the setup files for the simulations can be found at https://doi.org/10.5281/zenodo.8123395. Source data are provided with this paper.

References

  1. Gu, L.-Q., Cheley, S. & Bayley, H. Electroosmotic enhancement of the binding of a neutral molecule to a transmembrane pore. Proc. Natl. Acad. Sci. USA 100, 15498–15503 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Huang, G., Willems, K., Soskine, M., Wloka, C. & Maglia, G. Electro-osmotic capture and ionic discrimination of peptide and protein biomarkers with FraC nanopores. Nat. Commun. 8, 935 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Huang, G. et al. Electro-osmotic vortices promote the capture of folded proteins by PlyAB nanopores. Nano Lett. 20, 3819–3827 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Asandei, A. et al. Electroosmotic trap against the electrophoretic force near a protein nanopore reveals peptide dynamics during capture and translocation. ACS Appl. Mater. Interfaces 8, 13166–13179 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Willems, K. et al. Engineering and modeling the electrophoretic trapping of a single protein inside a nanopore. ACS Nano 13, 9980–9992 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gubbiotti, A. et al. Electroosmosis in nanopores: computational methods and technological applications. Adv. Phys. X 7, 2036638 (2022).

    Google Scholar 

  7. Brinkerhoff, H., Kang, A. S. W., Liu, J., Aksimentiev, A. & Dekker, C. Multiple rereads of single proteins at single–amino acid resolution using nanopores. Science 374, 1509–1513 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yan, S. et al. Single molecule ratcheting motion of peptides in a Mycobacterium smegmatis porin A (MspA) nanopore. Nano Lett. 21, 6703–6710 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Chen, Z. et al. Controlled movement of ssDNA conjugated peptide through Mycobacterium smegmatis porin A (MspA) pore by a helicase motor for peptide sequencing application. Chem. Sci. 12, 15750–15756 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rosen, C. B., Rodriguez-Larrea, D. & Bayley, H. Single-molecule site-specific detection of protein phosphorylation with a nanopore. Nat. Biotechnol. 32, 179–181 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yu, L. et al. Unidirectional single-file transport of full-length proteins through a nanopore. Nat. Biotechnol. 41,1130–1139 (2023).

    Article  CAS  PubMed  Google Scholar 

  12. Biesemans, A., Soskine, M. & Maglia, G. A protein rotaxane controls the translocation of proteins across a ClyA nanopore. Nano Lett. 15, 6076–6081 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Aksimentiev, A. & Schulten, K. Imaging α-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map. Biophys. J. 88, 3745–3761 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bonome, E. L., Cecconi, F. & Chinappi, M. Electroosmotic flow through an α-hemolysin nanopore. Microfluid. Nanofluid. 21,96 (2017).

    Article  Google Scholar 

  15. Bétermier, F. et al. Single-sulfur atom discrimination of polysulfides with a protein nanopore for improved batteries. Commun. Mater. 1, 59 (2020).

    Article  Google Scholar 

  16. Di Muccio, G., Morozzo della Rocca, B. & Chinappi, M. Geometrically induced selectivity and unidirectional electroosmosis in uncharged nanopores. ACS Nano 16, 8716–8728 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Raffy, S., Sassoon, N., Hofnung, M. & Betton, J.-M. Tertiary structure-dependence of misfolding substitutions in loops of the maltose-binding protein. Protein Sci. 7, 2136–2142 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fonin, A. V. et al. Spectral characteristics of the mutant form GGBP/H152C of D-glucose/D-galactose-binding protein labeled with fluorescent dye BADAN: influence of external factors. PeerJ 2, e275 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ohmae, E., Sasaki, Y. & Gekko, K. Effects of five-tryptophan mutations on structure, stability and function of Escherichia coli dihydrofolate reductase. J. Biochem. 130, 439–447 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Japrung, D., Henricus, M., Li, Q. H., Maglia, G. & Bayley, H. Urea facilitates the translocation of single-stranded DNA and RNA through the α-hemolysin nanopore. Biophys. J. 98, 1856–1863 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pastoriza-Gallego, M. et al. Evidence of unfolded protein translocation through a protein nanopore. ACS Nano 8, 11350–11360 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Oukhaled, G. et al. Unfolding of proteins and long transient conformations detected by single nanopore recording. Phys. Rev. Lett. 98, 158101 (2007).

  23. Pastoriza-Gallego, M. et al. Dynamics of unfolded protein transport through an aerolysin pore. J. Am. Chem. Soc. 133, 2923–2931 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Rodriguez-Larrea, D. & Bayley, H. Multistep protein unfolding during nanopore translocation. Nat. Nanotechnol. 8, 288–295 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Bitinaite, J. et al. USER friendly DNA engineering and cloning method by uracil excision. Nucleic Acids Res. 35, 1992–2002 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cavaleiro, A. M., Kim, S. H., Seppälä, S., Nielsen, M. T. & Nørholm, M. H. H. Accurate DNA assembly and genome engineering with optimized uracil excision cloning. ACS Synth. Biol. 4, 1042–1046 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Nørholm, M. H. A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering. BMC Biotechnol. 10, 21 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang, S. et al. Bottom-up fabrication of a proteasome–nanopore that unravels and processes single proteins. Nat. Chem. 13, 1192–1199 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maglia, G., Heron, A. J. J. A. J., Stoddart, D., Japrung, D. & Bayley, H. Analysis of single nucleic acid molecules with protein nanopores. Methods Enzymol. 475, 591–623 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tanaka, Y. et al. 2-Methyl-2,4-pentanediol induces spontaneous assembly of staphylococcal α-hemolysin into heptameric pore structure. Protein Sci. 20, 448–456 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lambey, P. et al. Structural insights into recognition of chemokine receptors by Staphylococcus aureus leukotoxins. eLife 11, e72555 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nocadello, S. et al. Crystal structures of the components of the Staphylococcus aureus leukotoxin ED. Acta Crystallogr. Sect. D Struct. Biol. 72, 113–120 (2016).

    Article  CAS  Google Scholar 

  35. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pettersen, E. F. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–12 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Best, R. B. et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. J. Chem. Theory Comput. 8, 3257–3273 (2012).

  39. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article  CAS  Google Scholar 

  40. Yoo, J. & Aksimentiev, A. Improved parametrization of Li+, Na+, K+, and Mg2+ Ions for all-atom molecular dynamics simulations of nucleic acid systems. J. Phys. Chem. Lett. 3, 45–50 (2012).

    Article  CAS  Google Scholar 

  41. Essmann, U. et al. A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995).

    Article  CAS  Google Scholar 

  42. Miyamoto, S. & Kollman, P. A. Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 13, 952–962 (1992).

    Article  CAS  Google Scholar 

  43. Andersen, H. C. Rattle: a ‘velocity’ version of the shake algorithm for molecular dynamics calculations. J. Comput. Phys. 52, 24–34 (1983).

    Article  CAS  Google Scholar 

  44. Martyna, G. J., Tobias, D. J. & Klein, M. L. Constant pressure molecular dynamics algorithms. J. Chem. Phys. 101, 4177–4189 (1994).

    Article  CAS  Google Scholar 

  45. Gumbart, J., Khalili-Araghi, F., Sotomayor, M. & Roux, B. Constant electric field simulations of the membrane potential illustrated with simple systems. Biochim. Biophys. Acta 1818, 294–302 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Crozier, P. S., Henderson, D., Rowley, R. L. & Busath, D. D. Model channel ion currents in NaCl-extended simple point charge water solution with applied-field molecular dynamics. Biophys. J. 81, 3077–3089 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.S. and G.M. acknowledge NWO-VICI grant 192.068 and NIH grant 1086554. M.C. and B.M.d.R acknowledge supercomputer time provided through the s1178 Production Grant from the Swiss National Supercomputing Centre (CSCS). M.C and B.M.d.R thank G. Di Muccio for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

G.M. and A.S. designed the research. A.S. carried out the experimental research. M.T. made the electrostatic maps of the nanopores. B.M.d.R. and M.C. carried out the simulations. All authors contributed to the writing of the manuscript and approved the final version.

Corresponding author

Correspondence to Giovanni Maglia.

Ethics declarations

Competing interests

The authors declare no competing interests. G.M. is a founder, director and shareholder of Portal Biotech Limited, a company engaged in the development of nanopore technologies. This work was not supported by Portal Biotech Limited.

Peer review

Peer review information

Nature Biotechnology thanks Henry Brinkerhoff and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–28 and Supplementary Tables 1–7

Reporting Summary

Supplementary Tables

This file contains the following tables: Supplementary Table 1: oligonucleotides (primers) used to generate the mutant CytK nanopores; Supplementary Table 2: oligonucleotides (primers) to generate the aerolysin mutant; Supplementary Table 3: oligonucleotides (primers) to generate the substrates; and Supplementary Table 4: the chemicals and reagents used in this study and their corresponding suppliers and catalog/article numbers.

Supplementary Data

Source data for Supplementary Fig. 28. Unprocessed SDS-PAGE of the substrates (proteins that were translocated across the nanopores).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sauciuc, A., Morozzo della Rocca, B., Tadema, M.J. et al. Translocation of linearized full-length proteins through an engineered nanopore under opposing electrophoretic force. Nat Biotechnol (2023). https://doi.org/10.1038/s41587-023-01954-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41587-023-01954-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing