Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Career Feature
  • Published:

Career feature

Bridging the gap in African biodiversity genomics and bioinformatics

The Open Institute of the African BioGenome Project empowers African scientists and institutions with the skill sets, capacity and infrastructure to advance scientific knowledge and innovation and drive economic growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The African BioGenome Project will leverage four programs to achieve its goals.
Fig. 2: The AfricaBP Open Institute will operate a distributed model.
Fig. 3: Participant representation for the first AfricaBP Open Institute workshop on endemic African species.
Fig. 4: Response of pre-workshop survey of the AfricaBP workshop on genomic technologies and infrastructures to identify skill needs of African researchers and genomic gaps in Africa.
Fig. 5: Responses of post-workshop survey to evaluate impact and outcome of the AfricaBP workshop on genomic technologies and infrastructures.

References

  1. Schneegans, S., Lewis, J. & Straza, T. UNESCO Science Report: The Race against Time for Smarter Development, 30–77 (2021); https://unesdoc.unesco.org/ark:/48223/pf0000377433.locale=en

  2. UNESCO. UIS Statistics—science, technology and innovation (accessed 15 January 2023); http://data.uis.unesco.org/

  3. Agnew, A. et al. The power of data to advance the SGDs (Elsevier, 2020); https://www.elsevier.com/__data/assets/pdf_file/0004/1058179/Elsevier-SDG-Report-2020.pdf

  4. Sianes, A., Vega-Muñoz, A., Tirado-Valencia, P. & Ariza-Montes, A. PLoS One 17, e0265409 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ebenezer, T. E. et al. Nature 603, 388–392 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Njaci, I. et al. Nat. Commun. 14, 1915 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ras, V. et al. PLoS Comput. Biol. 17, e1008640 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Moore, B. et al. PLoS Comput. Biol. 17, e1009218 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Almarri, M. A. et al. Cell 184, 4612–4625.e14 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. El-Attar, E. A. et al. Front. Genet. 13, 797465 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Samir Abdelhafiz, A., W L Ho, C. & Chuan Voo, T. Wellcome Open Res. 6, 4 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bowden, H. W., Steinhauer, K., Sanz, C. & Ullman, M. T. Neuropsychologia 51, 2492–2511 (2013).

    Article  PubMed  Google Scholar 

  13. Tavares, N. J. Int. J. Biling. Educ. Biling. 8, 319–335 (2015).

    Article  Google Scholar 

  14. Woolston, C. & Osório, J. Nature 570, 265–267 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Mahboob, A. & Lin, A. M. Y. In Conceptual Shifts and Contextualized Practices in Education for Glocal Interaction (eds Selvi, A. & Rudolph, N.) 197–217 (Springer, 2018).

  16. Taiwo, R. O. et al. BMC Med. Ethics 21, 124 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nekoto, W. et al. In Findings of the Association for Computational Linguistics (EMNLP 2020) 2144–2160 (Association for Computational Linguistics, 2020); https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.195

  18. Mlotshwa, B. C. et al. Genet. Med. 19, 826–833 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Akindolire, M. A., Aremu, B. R. & Ateba, C. N. Microbiol. Resour. Announc. 8, 01296–18 (2019).

    Article  Google Scholar 

  20. da Fonseca, R. R. et al. Mar. Genomics 30, 3–13 (2016).

    Article  PubMed  Google Scholar 

  21. Dures, S. G. et al. Divers. Distrib. 25, 870–879 (2019).

    Article  Google Scholar 

  22. Curry, C. J. et al. Mol. Biol. Evol. 38, 48–57 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Lehocká, K. et al. PLoS One 16, e0258714 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pečnerová, P. et al. Curr. Biol. 31, 1862–1871.e5 (2021).

    Article  PubMed  Google Scholar 

  25. Rhie, A. et al. Genome Biol. 21, 245 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Folarin, O. A., Happi, A. N. & Happi, C. T. Genome Biol. 15, 515 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Giovanni, M. Y. J. Infect. Dis. Microbiol. 1, 1–10 (2022).

    Google Scholar 

  28. Gathii, J. T. Int. Leg. Mater. 58, 1028–1083 (2019).

    Article  Google Scholar 

  29. Pasara, M. T. & Diko, N. Sustainability 12, 1419 (2020).

    Article  Google Scholar 

  30. Fusacchia, I., Balié, J. & Salvatici, L. Eur. Rev. Agric. Econ. 49, 237–284 (2022).

    Article  Google Scholar 

  31. Helmy, M., Awad, M. & Mosa, K. A. Appl. Transl. Genom. 9, 15–19 (2016).

    PubMed  PubMed Central  Google Scholar 

  32. Schwarze, K. et al. Genet. Med. 22, 85–94 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Dolgin, E. Nature 559, 291–293 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Webb, H. et al. Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems (CHI EA '19) CS19, 1–8 (2019); https://doi.org/10.1145/3290607.3299063

  35. Abdalla, M. A. & McGaw, L. J. Front. Pharmacol. 9, 456 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kamau, E. C. Global Transformations in the Use of Biodiversity for Research and Development (ed. Kamau, E. C.) 155–206 (Springer, 2022).

  37. Larivière, D. et al. Scalable, accessible, and reproducible reference genome assembly and evaluation in Galaxy. Preprint at bioRxiv https://doi.org/10.1101/2023.06.28.546576 (2023).

Download references

Acknowledgements

The authors would like to thank N. Mulder of the University of Cape Town and M. Blaxter of the Wellcome Sanger Institute for helping to review and provide feedback on the initial draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anne W. T. Muigai, Appolinaire Djikeng or ThankGod Echezona Ebenezer.

Ethics declarations

Competing interests

A.M. is an employee of Inqaba Biotechnical Industries (Pty) Ltd. J.E.I. is an employee of AbbVie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharaf, A., Ndiribe, C.C., Omotoriogun, T.C. et al. Bridging the gap in African biodiversity genomics and bioinformatics. Nat Biotechnol 41, 1348–1354 (2023). https://doi.org/10.1038/s41587-023-01933-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41587-023-01933-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing