Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatially informed cell-type deconvolution for spatial transcriptomics

Abstract

Many spatially resolved transcriptomic technologies do not have single-cell resolution but measure the average gene expression for each spot from a mixture of cells of potentially heterogeneous cell types. Here, we introduce a deconvolution method, conditional autoregressive-based deconvolution (CARD), that combines cell-type-specific expression information from single-cell RNA sequencing (scRNA-seq) with correlation in cell-type composition across tissue locations. Modeling spatial correlation allows us to borrow the cell-type composition information across locations, improving accuracy of deconvolution even with a mismatched scRNA-seq reference. CARD can also impute cell-type compositions and gene expression levels at unmeasured tissue locations to enable the construction of a refined spatial tissue map with a resolution arbitrarily higher than that measured in the original study and can perform deconvolution without an scRNA-seq reference. Applications to four datasets, including a pancreatic cancer dataset, identified multiple cell types and molecular markers with distinct spatial localization that define the progression, heterogeneity and compartmentalization of pancreatic cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic overview of CARD.
Fig. 2: Comparison of deconvolution accuracy of different methods in simulations under analysis scenarios 1–5.
Fig. 3: Analyzing MOB data.
Fig. 4: Analyzing the PDAC data.
Fig. 5: Analyzing the hippocampus region in Slide-seqV2 and 10x Visium mouse brain (coronal) data.

Similar content being viewed by others

Data availability

This study made use of publicly available datasets. These include the MOB dataset (http://www.spatialtranscriptomicsresearch.org), human PDAC dataset (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE111672), mouse hippocampus Slide-seqV2 dataset (https://singlecell.broadinstitute.org/single_cell/study/SCP948/robust-decomposition-of-cell-type-mixtures-in-spatial-transcriptomics) and mouse brain (coronal section) 10x Visium dataset (https://www.10xgenomics.com/resources/datasets/). For the scRNA-seq references used in this study, all are publicly available, with details provided in Supplementary Tables 2 and 3.

Code availability

The CARD software package and source code have been deposited at www.xzlab.org/software.html. All scripts used to reproduce all the analyses are also available at the same website.

References

  1. Burgess, D. J. Spatial transcriptomics coming of age. Nat. Rev. Genet. 20, 317 (2019).

  2. Soldatov, R. et al. Spatiotemporal structure of cell fate decisions in murine neural crest. Science 364, eaas9536 (2019).

  3. Prinz, M., Priller, J., Sisodia, S. S. & Ransohoff, R. M. Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat. Neurosci. 14, 1227–1235 (2011).

  4. Svensson, V., Teichmann, S. A. & Stegle, O. SpatialDE: Identification of spatially variable genes. Nat. Methods 15, 343–346 (2018).

  5. Dries, R. et al. Giotto: a toolbox for integrative analysis and visualization of spatial expression data. Genome Biol. 22, 78 (2021).

    Article  CAS  Google Scholar 

  6. Pham, D. et al. stLearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell–cell interactions and spatial trajectories within undissociated tissues. Preprint at bioRxiv https://doi.org/10.1101/2020.05.31.125658 (2020).

  7. Biancalani, T. et al. Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram. Nat. Methods 18, 1352–1362 (2021).

    Article  Google Scholar 

  8. Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Preprint at bioRxiv https://doi.org/10.1101/2021.06.15.448542 (2021).

  9. Fischl, A. M., Heron, P. M., Stromberg, A. J. & McClintock, T. S. Activity-dependent genes in mouse olfactory sensory neurons. Chem. Senses 39, 439–449 (2014).

  10. Moses, L. & Pachter, L. Museum of spatial transcriptomics. Nat. Methods https://doi.org/10.1038/s41592-022-01409-2 (2022).

  11. Asp, M., Bergenstråhle, J. & Lundeberg, J. Spatially resolved transcriptomes—next generation tools for tissue exploration. Bioessays 42, e1900221 (2020).

  12. Genomics, 10x. 10x Genomics Visium. https://www.10xgenomics.com/spatial-transcriptomics/

  13. Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).

  14. Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).

  15. Liao, J., Lu, X., Shao, X., Zhu, L. & Fan, X. Uncovering an organ’s molecular architecture at single-cell resolution by spatially resolved transcriptomics. Trends Biotechnol. 39, 43–58 (2020).

  16. Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021).

    Article  CAS  Google Scholar 

  17. Hwang, B., Lee, J. H. & Bang, D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp. Mol. Med. 50, 1–14 (2018).

  18. Cobos, F. A., Alquicira-Hernandez, J., Powell, J. E., Mestdagh, P. & De Preter, K. Benchmarking of cell type deconvolution pipelines for transcriptomics data. Nat. Commun. 11, 5650 (2020).

    Article  Google Scholar 

  19. Wang, X., Park, J., Susztak, K., Zhang, N. R. & Li, M. Bulk tissue cell type deconvolution with multi-subject single-cell expression reference. Nat. Commun. 10, 380 (2019).

  20. Dong, M. et al. SCDC: bulk gene expression deconvolution by multiple single-cell RNA sequencing references. Brief. Bioinform. 22, 416–427 (2020).

  21. Jew, B. et al. Accurate estimation of cell composition in bulk expression through robust integration of single-cell information. Nat. Commun. 11, 1971 (2020).

  22. Elosua-Bayes, M., Nieto, P., Mereu, E., Gut, I. & Heyn, H. SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes. Nucleic Acids Res. 49, e50 (2021).

    Article  CAS  Google Scholar 

  23. Cable, D. M. et al. Robust decomposition of cell type mixtures in spatial transcriptomics. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-00830-w (2021).

  24. Song, Q. & Su, J. DSTG: deconvoluting spatial transcriptomics data through graph-based artificial intelligence. Brief. Bioinform. 22, bbaa414 (2021).

  25. Lopez, R. et al. Multi-resolution deconvolution of spatial transcriptomics data reveals continuous patterns of inflammation. Preprint at bioRxiv https://doi.org/10.1101/2021.05.10.443517 (2021).

  26. Danaher, P. et al. Advances in mixed cell deconvolution enable quantification of cell types in spatial transcriptomic data. Nat. Commun. 13, 385 (2022).

    Article  CAS  Google Scholar 

  27. Gayoso, A. et al. scvi-tools: a library for deep probabilistic analysis of single-cell omics data. Preprint at bioRxiv https://doi.org/10.1101/2021.04.28.441833 (2021).

  28. Andersson, A. et al. Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography. Commun. Biol. 3, 565 (2020).

    Article  Google Scholar 

  29. Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-01139-4 (2022).

  30. Dong, R. & Yuan, G.-C. SpatialDWLS: accurate deconvolution of spatial transcriptomic data. Genome Biol. 22, 145 (2021).

  31. Stoltzfus, C. R. et al. CytoMAP: a spatial analysis toolbox reveals features of myeloid cell organization in lymphoid tissues. Cell Rep. 31, 107523 (2020).

    Article  CAS  Google Scholar 

  32. Dudas, M., Wysocki, A., Gelpi, B. & Tuan, T.-L. Memory encoded throughout our bodies: molecular and cellular basis of tissue regeneration. Pediatr. Res. 63, 502–512 (2008).

    Article  Google Scholar 

  33. Bove, A. et al. Local cellular neighborhood controls proliferation in cell competition. Mol. Biol. Cell 28, 3215–3228 (2017).

    Article  CAS  Google Scholar 

  34. Van Vliet, S. et al. Spatially correlated gene expression in bacterial groups: the role of lineage history, spatial gradients, and cell–cell interactions. Cell Syst. 6, 496–507 (2018).

    Article  Google Scholar 

  35. Phillips, D. et al. Immune cell topography predicts response to PD-1 blockade in cutaneous T cell lymphoma. Nat. Commun. 12, 6726 (2021).

    Article  CAS  Google Scholar 

  36. Schürch, C. M. et al. Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front. Cell 182, 1341–1359 (2020).

    Article  Google Scholar 

  37. Xia, C., Fan, J., Emanuel, G., Hao, J. & Zhuang, X. Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression. Proc. Natl Acad. Sci. USA 116, 19490–19499 (2019).

    Article  CAS  Google Scholar 

  38. Eng, C. H. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+. Nature 568, 235–239 (2019).

  39. Banerjee, S., Carlin, B. P. & Gelfand, A. E. Hierarchical Modeling and Analysis for Spatial Data 2nd edn (Chapman and Hall/CRC, 2014).

  40. Lee, D. A comparison of conditional autoregressive models used in Bayesian disease mapping. Spat. Spatiotemporal Epidemiol. 2, 79–89 (2011).

  41. Zhao, E. et al. Spatial transcriptomics at subspot resolution with BayesSpace. Nat. Biotechnol. 39, 1375–1384 (2021).

  42. Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014 (2018).

  43. Yang, S. & Zhou, X. Accurate and scalable construction of polygenic scores in large biobank data sets. Am. J. Hum. Genet. 106, 679–693 (2020).

  44. Zhou, X., Carbonetto, P. & Stephens, M. Polygenic modeling with Bayesian sparse linear mixed models. PLoS Genet. 9, e1003264 (2013).

  45. Tepe, B. et al. Single-cell RNA-seq of mouse olfactory bulb reveals cellular heterogeneity and activity-dependent molecular census of adult-born neurons. Cell Rep. 25, 2689–2703 (2018).

  46. Nagayama, S., Homma, R. & Imamura, F. Neuronal organization of olfactory bulb circuits. Front. Neural Circuits 8, 98 (2014).

  47. Moncada, R. et al. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat. Biotechnol. 38, 333–342 (2020).

  48. Zheng, B. et al. TM4SF1 as a prognostic marker of pancreatic ductal adenocarcinoma is involved in migration and invasion of cancer cells. Int. J. Oncol. 47, 490–498 (2015).

  49. Fu, F. et al. Role of transmembrane 4 L six family 1 in the development and progression of cancer. Front. Mol. Biosci. 7, 202 (2020).

  50. Xu, D. et al. Lost miR-141 and upregulated TM4SF1 expressions associate with poor prognosis of pancreatic cancer: regulation of EMT and angiogenesis by miR-141 and TM4SF1 via AKT. Cancer Biol. Ther. 21, 354–363 (2020).

    Article  Google Scholar 

  51. Zhang, X. et al. Expression pattern of cancer-associated fibroblast and its clinical relevance in intrahepatic cholangiocarcinoma. Hum. Pathol. 65, 92–100 (2017).

    Article  CAS  Google Scholar 

  52. Morvaridi, S., Dhall, D., Greene, M. I., Pandol, S. J. & Wang, Q. Role of YAP and TAZ in pancreatic ductal adenocarcinoma and in stellate cells associated with cancer and chronic pancreatitis. Sci. Rep. 5, 16759 (2015).

  53. Nielsen, M. F. B., Mortensen, M. B. & Detlefsen, S. Key players in pancreatic cancer-stroma interaction: cancer-associated fibroblasts, endothelial and inflammatory cells. World J. Gastroenterol. 22, 2678–2700 (2016).

    Article  CAS  Google Scholar 

  54. Zheng, C. et al. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 169, 1342–1356 (2017).

  55. Comito, G., Ippolito, L., Chiarugi, P. & Cirri, P. Nutritional exchanges within tumor microenvironment: impact for cancer aggressiveness. Front. Oncol. 10, 396 (2020).

  56. Lambrechts, D. et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat. Med. 24, 1277–1289 (2018).

  57. Peng, J. et al. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Res. 29, 725–738 (2019).

  58. Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. Nat. Biotechnol. 39, 313–319 (2021).

    Article  CAS  Google Scholar 

  59. Saunders, A. et al. Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174, 1015–1030 (2018).

  60. Del Bigio, M. R. Ependymal cells: biology and pathology. Acta Neuropathol. 119, 55–73 (2010).

    Article  Google Scholar 

  61. Ramachandran, V. S. (ed.) Encyclopedia of the Human Brain, 1st edn (Elsevier, 2003).

  62. Meyer, G. Building a human cortex: the evolutionary differentiation of Cajal–Retzius cells and the cortical hem. J. Anat. 217, 334–343 (2010).

  63. Hawrylycz, M. et al. in Springer Handbook of Bio-/Neuroinformatics (ed. Kasabov N.) 1111–1126 (Springer, 2014).

  64. Wozny, C. et al. VGLUT2 functions as a differential marker for hippocampal output neurons. Front. Cell. Neurosci. 12, 337 (2018).

  65. Wälchli, T. et al. Quantitative assessment of angiogenesis, perfused blood vessels and endothelial tip cells in the postnatal mouse brain. Nat. Protoc. 10, 53–74 (2015).

    Article  Google Scholar 

  66. Lubeck, E., Coskun, A. F., Zhiyentayev, T., Ahmad, M. & Cai, L. Single-cell in situ RNA profiling by sequential hybridization. Nat. Methods 11, 360–361 (2014).

  67. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).

  68. Moffitt, J. R. et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 362, eaau5324 (2018).

  69. He, Y. et al. ClusterMap for multi-scale clustering analysis of spatial gene expression. Nat. Commun. 12, 5909 (2021).

    Article  CAS  Google Scholar 

  70. Moen, E. et al. Deep learning for cellular image analysis. Nat. Methods 16, 1233–1246 (2019).

    Article  CAS  Google Scholar 

  71. Bergenstråhle, J., Larsson, L. & Lundeberg, J. Seamless integration of image and molecular analysis for spatial transcriptomics workflows. BMC Genomics 21, 482 (2020).

    Article  Google Scholar 

  72. Sun, S. et al. Differential expression analysis for RNAseq using Poisson mixed models. Nucleic Acids Res. 45, e106 (2017).

    Article  CAS  Google Scholar 

  73. Sun, S. et al. Heritability estimation and differential analysis of count data with generalized linear mixed models in genomic sequencing studies. Bioinformatics 35, 487–496 (2019).

    Article  CAS  Google Scholar 

  74. Sun, S., Zhu, J. & Zhou, X. Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies. Nat. Methods 17, 193–200 (2020).

  75. Hu, J. et al. SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nat. Methods. 18, 1342–1351 (2021).

    Article  Google Scholar 

  76. Soneson, C. & Robinson, M. D. Bias, robustness and scalability in single-cell differential expression analysis. Nat. Methods 15, 255–261 (2018).

  77. Duò, A., Robinson, M. D. & Soneson, C. A systematic performance evaluation of clustering methods for single-cell RNA-seq data. F1000Res. 7, 1141 (2018).

  78. De Oliveira, V. Bayesian analysis of conditional autoregressive models. Ann. Inst. Stat. Math. 64, 107–133 (2012).

  79. Besag, J. Spatial interaction and the statistical analysis of lattice systems. J. R. Stat. Soc. Ser. B 36, 192–225 (1974).

    Google Scholar 

  80. Vanhatalo, J., Pietiläinen, V. & Vehtari, A. Approximate inference for disease mapping with sparse Gaussian processes. Stat. Med. 29, 1580–1607 (2010).

  81. Rousset, F. & Ferdy, J. B. Testing environmental and genetic effects in the presence of spatial autocorrelation. Ecography 37, 781–790 (2014).

  82. Cressie, N. Statistics for spatial data. Terra Nova 4, 613–617 (1992).

  83. Rue, H. & Held, L. Gaussian Markov Random Fields: Theory and Applications 1st edn (Chapman and Hall/CRC, 2005).

  84. Brook, D. On the distinction between the conditional probability and the joint probability approaches in the specification of nearest-neighbour systems. Biometrika 51, 481–483 (1964).

    Article  Google Scholar 

  85. Lee, D. D. & Seung, H. S. in Advances in Neural Information Processing Systems (eds Leen T., Dietterich T. & Tresp V.) 556–562 (MIT Press, 2001).

  86. Janecek, A. & Tan, Y. Iterative improvement of the multiplicative update nmf algorithm using nature-inspired optimization. In 2011 Seventh International Conference on Natural Computation Vol. 3 1668–1672 (IEEE, 2011).

  87. Park, J.-S. & Oh, S.-J. A new concave hull algorithm and concaveness measure for n-dimensional datasets. J. Inf. Sci. Eng. 28, 587–600 (2012).

    Google Scholar 

  88. Ralston, A. & Shaw, K. Gene expression regulates cell differentiation. Nat. Educ. 1, 127–131 (2008).

    Google Scholar 

  89. Li, H., Calder, C. A. & Cressie, N. Beyond Moran’s I: testing for spatial dependence based on the spatial autoregressive model. Geogr. Anal. 39, 357–375 (2007).

    Article  Google Scholar 

  90. Radeloff, V. C., Miller, T. F., He, H. S. & Mladenoff, D. J. Periodicity in spatial data and geostatistical models: autocorrelation between patches. Ecography 23, 81–91 (2000).

    Article  Google Scholar 

  91. Bivand, R. et al. spdep: Spatial Dependence: Weighting Schemes, Statistics and Models. R package version 0.5-37 (2011).

  92. Teschendorff, A. E., Zhu, T., Breeze, C. E. & Beck, S. EPISCORE: cell type deconvolution of bulk tissue DNA methylomes from single-cell RNA-seq data. Genome Biol. 21, 221 (2020).

Download references

Acknowledgements

This study was supported by the National Institutes of Health (NIH) grants R01GM126553, R01HG011883 and R01GM144960 (all to X.Z.).

Author information

Authors and Affiliations

Authors

Contributions

X.Z. conceived the idea and provided funding support. Y.M. and X.Z. designed the experiments. Y.M. developed the method, implemented the software, performed simulations and analyzed real data. Y.M. and X.Z. wrote the manuscript.

Corresponding author

Correspondence to Xiang Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–94, Tables 1–6 and Notes 1–9.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nat Biotechnol 40, 1349–1359 (2022). https://doi.org/10.1038/s41587-022-01273-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41587-022-01273-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing