Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

MHC class II tetramers engineered for enhanced binding to CD4 improve detection of antigen-specific T cells

Abstract

The ability to identify T cells that recognize specific peptide antigens bound to major histocompatibility complex (MHC) molecules has enabled enumeration and molecular characterization of the lymphocytes responsible for cell-mediated immunity. Fluorophore-labeled peptide:MHC class I (p:MHCI) tetramers are well-established reagents for identifying antigen-specific CD8+ T cells by flow cytometry, but efforts to extend the approach to CD4+ T cells have been less successful, perhaps owing to lower binding strength between CD4 and MHC class II (MHCII) molecules. Here we show that p:MHCII tetramers engineered by directed evolution for enhanced CD4 binding outperform conventional tetramers for the detection of cognate T cells. Using the engineered tetramers, we identified about twice as many antigen-specific CD4+ T cells in mice immunized against multiple peptides than when using traditional tetramers. CD4 affinity-enhanced p:MHCII tetramers, therefore, allow direct sampling of antigen-specific CD4+ T cells that cannot be accessed with conventional p:MHCII tetramer technology. These new reagents could provide a deeper understanding of the T cell repertoire.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Identification of I-Ab molecules with enhanced binding to CD4.
Fig. 2: Detection of polyclonal CD4+ T cells from immunized mice using p:I-Ab-4E tetramers.
Fig. 3: Detection of polyclonal CD4+ effector T cell p:I-Ab-4E tetramers is peptide specific.

References

  1. 1.

    Xiong, Y., Kern, P., Chang, H. & Reinherz, E. T cell receptor binding to a pMHCII ligand is dinetically distinct from and independent of CD4. J. Biol. Chem. 276, 5659–5667 (2001).

    CAS  Article  Google Scholar 

  2. 2.

    Jonsson, P. et al. Remarkably low affinity of CD4/peptide-major histocompatibility complex class II protein interactions. Proc. Natl Acad. Sci. USA 113, 5682–5687 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    Martinez, R. J., Andargachew, R., Martinez, H. A. & Evavold, B. D. Low-affinity CD4+ T cells are major responders in the primary immune response. Nat. Commun. 7, 13848 (2016).

    CAS  Article  Google Scholar 

  4. 4.

    Davis, M. M. T cell receptor gene diversity and selection. Annu. Rev. Biochem. 59, 475–496 (1990).

    CAS  Article  Google Scholar 

  5. 5.

    Rudolph, M. G., Stanfield, R. L. & Wilson, I. A. How TCRs bind MHCs, peptides, and coreceptors. Annu. Rev. Immunol. 24, 419–466 (2006).

    CAS  Article  Google Scholar 

  6. 6.

    Altman, J. D. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96 (1996).

    CAS  Article  Google Scholar 

  7. 7.

    Doherty, P. C. The tetramer transformation. J. Immunol. 187, 5–6 (2011).

    CAS  Article  Google Scholar 

  8. 8.

    Crawford, F., Kozono, H., White, J., Marrack, P. & Kappler, J. Detection of antigen-specific T cells with multivalent soluble class II MHC covalent peptide complexes. Immunity 8, 675–682 (1998).

    CAS  Article  Google Scholar 

  9. 9.

    Wang, X. X. et al. Affinity maturation of human CD4 by yeast surface display and crystal structure of a CD4-HLA-DR1 complex. Proc. Natl Acad. Sci. USA 108, 15960–15965 (2011).

    CAS  Article  Google Scholar 

  10. 10.

    Govern, C. C., Paczosa, M. K., Chakraborty, A. K. & Huseby, E. S. Fast on-rates allow short dwell time ligands to activate T cells. Proc. Natl Acad. Sci. USA 107, 8724–8729 (2010).

    CAS  Article  Google Scholar 

  11. 11.

    Mortensen, R. Overview of gene targeting by homologous recombination. Curr. Protoc. Mol. Biol. Chapter 23.1, Unit 23.1 (2006).

  12. 12.

    Kolawole, E. M., Andargachew, R., Liu, B., Jacobs, J. R. & Evavold, B. D. 2D kinetic analysis of TCR and CD8 coreceptor for LCMV GP33 epitopes. Front. Immunol. 9, 2348 (2018).

    Article  Google Scholar 

  13. 13.

    Oxenius, A., Bachmann, M. F., Zinkernagel, R. M. & Hengartner, H. Virus-specific MHC-class II-restricted TCR-transgenic mice: effects on humoral and cellular immune responses after viral infection. Eur. J. Immunol. 28, 390–400 (1998).

    CAS  Article  Google Scholar 

  14. 14.

    Oxenius, A. et al. Presentation of endogenous viral proteins in association with major histocompatibility complex class II: on the role of intracellular compartmentalization, invariant chain and the TAP transporter system. Eur. J. Immunol. 25, 3402–3411 (1995).

    CAS  Article  Google Scholar 

  15. 15.

    Nelson, R. W. et al. T cell receptor cross-reactivity between similar foreign and self peptides influences naive cell population size and autoimmunity. Immunity 42, 95–107 (2015).

    CAS  Article  Google Scholar 

  16. 16.

    Wyer, J. R. et al. T cell receptor and coreceptor CD8 alphaalpha bind peptide-MHC independently and with distinct kinetics. Immunity 10, 219–225 (1999).

    CAS  Article  Google Scholar 

  17. 17.

    Rees, W. et al. An inverse relationship between T cell receptor affinity and antigen dose during CD4+ T cell responses in vivo and in vitro. Proc. Natl Acad. Sci. USA 96, 9781–9786 (1999).

    CAS  Article  Google Scholar 

  18. 18.

    Moon, J. J. et al. Naive CD4+ T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 27, 203–213 (2007).

    CAS  Article  Google Scholar 

  19. 19.

    Robertson, J. M., Jensen, P. E. & Evavold, B. D. DO11.10 and OT-II T cells recognize a C-terminal ovalbumin 323–339 epitope. J. Immunol. 164, 4706–4712 (2000).

    CAS  Article  Google Scholar 

  20. 20.

    Malhotra, D. et al. Tolerance is established in polyclonal CD4+ T cells by distinct mechanisms, according to self-peptide expression patterns. Nat. Immunol. 17, 187–195 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    Masteller, E. L. et al. Peptide-MHC class II dimers as therapeutics to modulate antigen-specific T cell responses in autoimmune diabetes. J. Immunol. 171, 5587–5595 (2003).

    CAS  Article  Google Scholar 

  22. 22.

    Stratmann, T. et al. Susceptible MHC alleles, not background genes, select an autoimmune T cell reactivity. J. Clin. Invest. 112, 902–914 (2003).

    CAS  Article  Google Scholar 

  23. 23.

    Huang, J. et al. Detection, phenotyping, and quantification of antigen-specific T cells using a peptide-MHC dodecamer. Proc. Natl Acad. Sci. USA 113, E1890–E1897 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    Williams, T. et al. Development of T cell lines sensitive to antigen stimulation. J. Immunol. Methods 462, 65–73 (2018).

    CAS  Article  Google Scholar 

  25. 25.

    Slavin, A. et al. Induction of a multiple sclerosis-like disease in mice with an immunodominant epitope of myelin oligodendrocyte glycoprotein. Autoimmunity 28, 109–120 (1998).

    CAS  Article  Google Scholar 

  26. 26.

    Bunch, T. A., Grinblat, Y. & Goldstein, L. S. Characterization and use of the Drosophila metallothionein promoter in cultured Drosophila melanogaster cells. Nucleic Acids Res. 16, 1043–1061 (1988).

    CAS  Article  Google Scholar 

  27. 27.

    Moon, J. J. et al. Quantitative impact of thymic selection on Foxp3+ and Foxp3 subsets of self-peptide/MHC class II-specific CD4+ T cells. Proc. Natl Acad. Sci. USA 108, 14602–14607 (2011).

    CAS  Article  Google Scholar 

  28. 28.

    Kotov, D. I. et al. TCR affinity biases Th cell differentiation by regulating CD25, Eef1e1, and Gbp2. J. Immunol. 202, 2535–2545 (2019).

    CAS  Article  Google Scholar 

  29. 29.

    Choi, Y. S. et al. Bcl6 expressing follicular helper CD4 T cells are fate committed early and have the capacity to form memory. J. Immunol. 190, 4014–4026 (2013).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grants R01 AI143826 and R01 AI039614 to M.K.J., F32 AI114050 to D.M., T32 AI083196 and T32 AI007313 to D.I.K. and R01 AI096879 to B.D.E.

Author information

Affiliations

Authors

Contributions

T.D., D.M., D.I.K., P.D.K., and E.M.K. designed and performed experiments and edited the manuscript. B.D.E. designed experiments and edited the manuscript. M.K.J. designed experiments and wrote the manuscript.

Corresponding author

Correspondence to Marc K. Jenkins.

Ethics declarations

Ethics

Experiments were approved by the University of Minnesota Institutional Animal Care and Use Committee and conducted in accordance with its policies.

Competing interests

M.K.J, T.D. and D.M. are co-inventors on a patent application covering CD4 affinity enhanced p:MHCII tetramers owned by Regents of the University of Minnesota (#PCT/US19/44605 – Co-receptor affinity enhanced major histocompatibility class II molecules).

Additional information

Peer review information Nature Biotechnology thanks Lawrence Stern and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

Source Data Fig. 1

Scatter plot values

Source Data Fig. 2

Scatter plot values

Source Data Fig. 3

Scatter plot values

Source Data Fig. 3

Scatter plot values

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dileepan, T., Malhotra, D., Kotov, D.I. et al. MHC class II tetramers engineered for enhanced binding to CD4 improve detection of antigen-specific T cells. Nat Biotechnol (2021). https://doi.org/10.1038/s41587-021-00893-9

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing