Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A complete domain-to-species taxonomy for Bacteria and Archaea

An Author Correction to this article was published on 04 May 2020

This article has been updated


The Genome Taxonomy Database is a phylogenetically consistent, genome-based taxonomy that provides rank-normalized classifications for ~150,000 bacterial and archaeal genomes from domain to genus. However, almost 40% of the genomes in the Genome Taxonomy Database lack a species name. We address this limitation by using commonly accepted average nucleotide identity criteria to set bounds on species and propose species clusters that encompass all publicly available bacterial and archaeal genomes. Unlike previous average nucleotide identity studies, we chose a single representative genome to serve as the effective nomenclatural ‘type’ defining each species. Of the 24,706 proposed species clusters, 8,792 are based on published names. We assigned placeholder names to the remaining 15,914 species clusters to provide names to the growing number of genomes from uncultivated species. This resource provides a complete domain-to-species taxonomic framework for bacterial and archaeal genomes, which will facilitate research on uncultivated species and improve communication of scientific results.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Overview of workflow for organizing genome assemblies into species clusters.
Fig. 2: Properties of genomes selected as species representatives.
Fig. 3: Illustrative examples of circumscribing species for varying ANI values between species representatives.
Fig. 4: Key properties of GTDB species clusters circumscribed by ANI to a representative genome.
Fig. 5: Comparison of proposed species assignments with the NCBI taxonomy.

Data availability

Genome metadata used to establish the proposed species clusters are available on the GTDB website in the files ar122_metadata.tsv and bac120_metadata.tsv. Metadata for the 24,706 GTDB species representatives are in the file sp_clusters.tsv. Genomes in the GTDB satisfying the high-quality MIMAG criteria47 are indicated in the file hq_mimag_genomes.tsv. Genome sequences are available from the NCBI Assembly database, including the 153 archaeal MAGs in BioProject PRJNA593905.

Code availability

The methodology used to establish the GTDB species clusters is implemented in version GTDB-R89 of the GTDB Species Cluster Toolkit (, a Python program available under the GNU General Public License v.3.0.

Change history

  • 04 May 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.


  1. 1.

    Kyrpides, N. C. et al. Genomic Encyclopedia of Bacteria and Archaea: sequencing a myriad of type strains. PLoS Biol. 12, e1001920 (2014).

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Mukherjee, S. et al. 1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life. Nat. Biotechnol. 35, 676–683 (2017).

    CAS  PubMed  Google Scholar 

  3. 3.

    Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).

    CAS  PubMed  Google Scholar 

  4. 4.

    Chen, I. A. et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 47, D666–D677 (2019).

    CAS  PubMed  Google Scholar 

  5. 5.

    Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649–662 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Konstantinidis, K. T. & Tiedje, J. M. Towards a genome-based taxonomy for prokaryotes. J. Bacteriol. 187, 6258–6264 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Thompson, C. C. et al. Microbial taxonomy in the post-genomic era: rebuilding from scratch? Arch. Microbiol. 197, 359–370 (2015).

    CAS  PubMed  Google Scholar 

  8. 8.

    Garrity, G. M. A new genomics-driven taxonomy of Bacteria and Archaea: are we there yet? J. Clin. Microbiol. 54, 1956–1963 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Hugenholtz, P., Sharshewski, A. & Parks, D. H. in Microbial Evolution (ed. Ochman, H.) 55–65 (Cold Spring Harbor Laboratory Press, 2016).

  10. 10.

    Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).

    CAS  PubMed  Google Scholar 

  11. 11.

    Cohan, F. M. What are bacterial species? Annu. Rev. Microbiol. 56, 457–487 (2002).

    CAS  PubMed  Google Scholar 

  12. 12.

    Konstantinidis, K. T., Ramette, A. & Tiedje, J. M. The bacterial species definition in the genomic era. Phil. Trans. R. Soc. Lond. B Biol. Sci. 361, 1929–1940 (2006).

    Google Scholar 

  13. 13.

    Fraser, C., Alm, E. J., Polz, M. F., Spratt, B. G. & Hanage, W. P. The bacterial species challenge: making sense of genetic and ecological diversity. Science 323, 741–746 (2009).

    CAS  PubMed  Google Scholar 

  14. 14.

    Bobay, L. M. & Ochman, H. Biological species are universal across life’s domains. Genome Biol. Evol. 9, 491–501 (2017).

    PubMed Central  Google Scholar 

  15. 15.

    Ciufo, S. et al. Using average nucleotide identity to improve taxonomic assignments in prokaryotic genomes at the NCBI. Int. J. Syst. Evol. Microbiol. 68, 2386–2392 (2018).

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Chun, J. et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 68, 461–466 (2018).

    CAS  PubMed  Google Scholar 

  17. 17.

    Whitman, W. B. Genome sequences as the type material for taxonomic descriptions of prokaryotes. Syst. Appl. Microbiol. 38, 217–222 (2015).

    CAS  PubMed  Google Scholar 

  18. 18.

    Konstantinidis, K. T. & Tiedje, J. M. Genomic insights that advance the species definition for prokaryotes. Proc. Natl Acad. Sci. USA 102, 2567–2572 (2005).

    CAS  PubMed  Google Scholar 

  19. 19.

    Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Olm, M. R. et al. Consistent metagenome-derived metrics verify and define bacterial species boundaries. mSystems 5, e00731-19 (2020).

  21. 21.

    Richter, M. & Rosselló-Móra, R. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl Acad. Sci. USA 45, 19126–19131 (2009).

    Google Scholar 

  22. 22.

    Varghese, N. J. et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res. 43, 6761–6771 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Yoon, S. H., Ha, S. M., Lim, J., Kwon, S. & Chun, J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110, 1281–1286 (2017).

    CAS  PubMed  Google Scholar 

  24. 24.

    Ondov, B. D. et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 17, 132 (2016).

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Goris, J. et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 57, 81–91 (2007).

    CAS  PubMed  Google Scholar 

  26. 26.

    Rodriguez-R, L. M. et al. The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucleic Acids Res. 46, W282–W288 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Parker, C. T., Tindall, B. J. & Garrity, G. M. International Code of Nomenclature of Prokaryotes. Int. J. Syst. Evol. Microbiol. 69, S1–S111 (2019).

    Google Scholar 

  28. 28.

    Federhen, S. et al. Meeting report: GenBank microbial genomic taxonomy workshop (12–13 May, 2015). Stand. Genomic Sci. 11, 15 (2016).

  29. 29.

    Barco, R. A. et al. A genus definition for Bacteria and Archaea based on a standard genome relatedness index. mBio 11, e02475–19 (2020).

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Whitman, W. B. Modest proposals to expand the type material for naming of prokaryotes. Int. J. Syst. Evol. Microbiol. 66, 2108–2112 (2016).

    CAS  PubMed  Google Scholar 

  31. 31.

    Konstantinidis, K. T., Rosselló-Móra, R. & Amann, R. Uncultivated microbes in need of their own taxonomy. ISME J. 11, 2399–2406 (2017).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Chuvochina, M. et al. The importance of designating type material for uncultured taxa. Syst. Appl. Microbiol. 42, 15–21 (2019).

    PubMed  Google Scholar 

  33. 33.

    Kitts, P. A. et al. Assembly: a resource for assembled genomes at NCBI. Nucleic Acids Res. 44, D73–D80 (2016).

    CAS  PubMed  Google Scholar 

  34. 34.

    Parte, A. C. LPSN—List of Prokaryotic names with Standing in Nomenclature (, 20 years on. Int. J. Syst. Evol. Microbiol. 68, 1825–1829 (2018).

    PubMed  Google Scholar 

  35. 35.

    Reimer, L. C. BacDive in 2019: bacterial phenotypic data for high-throughput biodiversity analysis. Nucleic Acids Res. 47, D631–D636 (2019).

    CAS  PubMed  Google Scholar 

  36. 36.

    Verslyppe, B., De Smet, W., De Baets, B., De Vos, P. & Dawyndt, P. StrainInfo introduces electronic passports for microorganisms. Syst. Appl. Microbiol. 37, 42–50 (2014).

    PubMed  Google Scholar 

  37. 37.

    Federhen, S. Type material in the NCBI Taxonomy Database. Nucleic Acids Res. 43, D1086–D1098 (2015).

    CAS  PubMed  Google Scholar 

  38. 38.

    O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016).

    PubMed  Google Scholar 

  39. 39.

    Ficht, T. Brucella taxonomy and evolution. Future Microbiol. 5, 859–866 (2010).

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Verger, J. M., Grimont, F., Grimont, P. A. D. & Grayon, M. Brucella, a monospecific genus as shown by deoxyribonucleic acid hybridization. Int. J. Syst. Evol. Microbiol. 35, 292–295 (1985).

    Google Scholar 

  41. 41.

    Riojas, M. A., McGough, K. J., Rider-Riojas, C. J., Rastogi, N. & Hazbón, M. H. Phylogenomic analysis of the species of the Mycobacterium tuberculosis complex demonstrates that Mycobacterium africanum, Mycobacterium bovis, Mycobacterium caprae, Mycobacterium microti and Mycobacterium pinnipedii are later heterotypic synonyms of Mycobacterium tuberculosis. Int. J. Syst. Evol. Microbiol. 68, 324–332 (2018).

    CAS  PubMed  Google Scholar 

  42. 42.

    Liu, G. al. Genome-based reclassification of Bacillus plakortidis Borchert et al. 2007 and Bacillus lehensis Ghosh et al. 2007 as a later heterotypic synonym of Bacillus oshimensis Yumoto et al. 2005; Bacillus rhizosphaerae Madhaiyan et al. 2011 as a later heterotypic synonym of Bacillus clausii Nielsen et al. 1995. Antonie Van Leeuwenhoek, doi:112, 1725–1730 (2019).

  43. 43.

    Oren, A. Reclassification of Halomonas caseinilytica Wu et al. 2008 as a later synonym of Halomonas sinaiensis—comments on the proposal by Hwang et al., Antonie Van Leeuwenhoek 109:1345–1352, 2016. Antonie Van Leeuwenhoek 110, 171 (2017).

    PubMed  Google Scholar 

  44. 44.

    Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of Bacteria and Archaea. Nat. Biotechnol. 35, 725–731 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Peix, A., Ramírez-Bahena, M. H. & Velázquez, E. Historical evolution and current status of the taxonomy of genus Pseudomonas. Infect. Genet. Evol. 9, 1132–1147 (2009).

    PubMed  Google Scholar 

  46. 46.

    Bhandari, V., Ahmod, N. Z., Shah, H. N. & Gupta, R. S. Molecular signatures for Bacillus species: demarcation of the Bacillus subtilis and Bacillus cereus clades in molecular terms and proposal to limit the placement of new species into the genus Bacillus. Int. J. Syst. Evol. Microbiol. 63, 2712–2726 (2013).

    CAS  PubMed  Google Scholar 

  47. 47.

    Beiko, R. G. Microbial malaise: how can we classify the microbiome? Trends Microbiol. 23, 671–679 (2015).

    CAS  PubMed  Google Scholar 

  48. 48.

    Osterman, B. & Moriyon, I. International committee on systematics of prokaryotes; subcommittee on the taxonomy of Brucella: minutes of the meeting, 17 September 2003, Pamplona, Spain. Int. J. Syst. Evol. Microbiol. 56, 1173–1175 (2006).

    Google Scholar 

  49. 49.

    Fenwick, A. J. & Carroll, K. C. Practical problems when incorporating rapidly changing microbial taxonomy into clinical practice. Clin. Chem. Lab. Med. 57, e238–e240 (2019).

    CAS  PubMed  Google Scholar 

  50. 50.

    Lan, R. & Reeves, P. R. Escherichia coli in disguise: molecular origins of Shigella. Microbes Infect. 4, 1125–1132 (2002).

    CAS  PubMed  Google Scholar 

  51. 51.

    Pettengill, E. A., Pettengill, J. B. & Binet, R. Phylogenetic analyses of Shigella and enteroinvasive Escherichia coli for the identification of molecular epidemiological markers: whole-genome comparative analysis does not support distinct genera designation. Front. Microbiol. 6, 1573 (2016).

  52. 52.

    Hanage, W. P. Fuzzy species revisited. BMC Biol. 11, 41 (2013).

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Evans, J. T. & Denef, V. J. To dereplicate or not to dereplicate? Preprint at bioRxiv (2019).

  54. 54.

    Zhu, Q. et al. Phylogenomics of 10,575 genomes reveals evolutionary proximity between domains Bacteria and Archaea. Nat. Commun. 10, 5477 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).

    CAS  PubMed  Google Scholar 

  56. 56.

    Chaumeil, P. A., Mussig, A., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2020).

  57. 57.

    Leinonen, R., Sugawara, H. & Shumway, M. The Sequence Read Archive. Nucleic Acids Res. 39, D19–D21 (2011).

    CAS  PubMed  Google Scholar 

  58. 58.

    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Eddy, S. R. Accelerated profile HMM searches. PLoS Comp. Biol. 7, e1002195 (2011).

    CAS  Google Scholar 

  61. 61.

    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of Bacteria and Archaea. ISME J. 6, 610–618 (2012).

    CAS  PubMed  Google Scholar 

Download references


We thank the members of an NSF-sponsored Microbial Taxonomy Workshop (NSF no. 1841658) for helpful discussions relating to establishing species clusters. This project was supported by an Australian Research Council Laureate Fellowship (grant no. FL150100038) awarded to P.H. and an Australian Research Council Future Fellowship (grant no. FT170100213) awarded to C.R.

Author information




D.H.P. and P.H. wrote the paper with constructive suggestions from all other authors. D.H.P. designed the initial study. M.C., C.R. and P.H. provided nomenclatural advice and manual curation of species representatives where necessary. D.H.P., P.-A.C. and A.J.M. performed the bioinformatic analyses.

Corresponding author

Correspondence to Donovan H. Parks.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1 and Tables 1–3, 5, 7, 8, 11, 14, 15, 17 and 19.

Reporting Summary

Supplementary Table 4

Genomes satisfying the assignment criteria of multiple species with validly or effectively published names

Supplementary Table 6

Species reclassified as synonyms because they have an ANI > 97% to a species with naming priority

Supplementary Table 9

Species where the difference in the mean ANI from the medoid and mean ANI from the GTDB-selected representative is >2

Supplementary Table 10

Genomes satisfying the assignment criteria for multiple GTDB species clusters

Supplementary Table 12

Species clusters that were incongruent with the proposed species clusters across all five trials evaluating the impact of forming species clusters from randomly selected representative genomes

Supplementary Table 13

Evaluation of the monophyly of the proposed species clusters

Supplementary Table 16

GTDB and NCBI species assignments for the 24,080 proposed representative genomes with a species classification in the NCBI taxonomy

Supplementary Table 18

List of 87 genomes retained in the genome dataset despite failing the QC criteria as they represent genomes of high nomenclatural or taxonomic importance

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Parks, D.H., Chuvochina, M., Chaumeil, PA. et al. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol 38, 1079–1086 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing