Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Droplet scRNA-seq is not zero-inflated

Matters Arising to this article was published on 01 February 2021

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Comparing observed with expected zeros in scRNA-seq data.

References

  1. Chen, X., Teichmann, S. A. & Meyer, K. B. Annu. Rev. Biomed. Data Sci. 1, 29–51 (2018).

    Article  Google Scholar 

  2. Vallejos, C. A., Risso, D., Scialdone, A., Dudoit, S. & Marioni, J. C. Nat. Methods 14, 565–571 (2017).

    Article  CAS  Google Scholar 

  3. Bacher, R. & Kendziorski, C. Genome Biol. 17, 63 (2016).

    Article  Google Scholar 

  4. Haque, A., Engel, J., Teichmann, S. A. & Lönnberg, T. Genome Med. 9, 75 (2017).

    Article  Google Scholar 

  5. Silverman, J.D., Roche, K., Mukherjee, S. & David, L.A. Preprint at bioRxiv https://doi.org/10.1101/477794 (2018).

  6. Kharchenko, P. V., Silberstein, L. & Scadden, D. T. Nat. Methods 11, 740–742 (2014).

    Article  CAS  Google Scholar 

  7. Finak, G. et al. Genome Biol. 16, 278 (2015).

    Article  Google Scholar 

  8. Pierson, E. & Yau, C. Genome Biol. 16, 241 (2015).

    Article  Google Scholar 

  9. Lin, P., Troup, M. & Ho, J. W. K. Genome Biol. 18, 59 (2017).

    Article  Google Scholar 

  10. Tung, P.-Y. et al. Sci. Rep. 7, 39921 (2017).

    Article  CAS  Google Scholar 

  11. Gong, W., Kwak, I.-Y., Pota, P., Koyano-Nakagawa, N. & Garry, D. J. BMC Bioinforma. 19, 220 (2018).

    Article  Google Scholar 

  12. Zhu, L., Lei, J., Devlin, B. & Roeder, K. Ann. Appl. Stat. 12, 609–632 (2018).

    Article  Google Scholar 

  13. Azizi, E., Prabhakaran, S., Carr, A. & Pe’er, D. Genomics Computational. Biol. 3, e46 (2017).

    Article  Google Scholar 

  14. Li, W. V. & Li, J. J. Nat. Commun. 9, 997 (2018).

    Article  Google Scholar 

  15. van Dijk, D. et al. Cell 174, 716–729.e27 (2018).

    Article  Google Scholar 

  16. Tang, W. et al. Bioinformatics https://doi.org/10.1093/bioinformatics/btz726 (2019).

  17. Huang, M. et al. Nat. Methods 15, 539–542 (2018).

    Article  CAS  Google Scholar 

  18. Risso, D., Perraudeau, F., Gribkova, S., Dudoit, S. & Vert, J.-P. Nat. Commun. 9, 284 (2018).

    Article  Google Scholar 

  19. Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Nat. Methods 15, 1053–1058 (2018).

    Article  CAS  Google Scholar 

  20. Eraslan, G., Simon, L. M., Mircea, M., Mueller, N. S. & Theis, F. J. Nat. Commun. 10, 390 (2019).

    Article  Google Scholar 

  21. Vieth, B., Ziegenhain, C., Parekh, S., Enard, W. & Hellmann, I. Bioinformatics 33, 3486–3488 (2017).

    Article  CAS  Google Scholar 

  22. Andrews, T.S. & Hemberg, M. Bioinformatics https://doi.org/10.1093/bioinformatics/bty1044 (2018).

    Article  Google Scholar 

  23. Townes, F. W., Hicks, S. C., Aryee, M. J. & Irizarry, R. A. Genome Biol. 20, 295 (2019).

    Article  CAS  Google Scholar 

  24. Macosko, E. Z. et al. Cell 161, 1202–1214 (2015).

    Article  CAS  Google Scholar 

  25. Klein, A. M. et al. Cell 161, 1187–1201 (2015).

    Article  CAS  Google Scholar 

  26. Zheng, G. X. Y. et al. Nat. Commun. 8, 14049 (2017).

    Article  CAS  Google Scholar 

  27. Svensson, V. et al. Nat. Methods 14, 381–387 (2017).

    Article  CAS  Google Scholar 

  28. McCullagh, P. & Nelder, J.A. Generalized Linear Models, Second Edition (CRC Press, 1989).

  29. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. Bioinformatics 26, 139–140 (2010).

    Article  CAS  Google Scholar 

  30. Padovan-Merhar, O. et al. Mol. Cell 58, 339–352 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank E. da Veiga Beltrame for feedback on the manuscript, G. Eraslan for making fast code for fitting negative binomial models available, and the scientific community on Twitter for suggesting writing up this analysis as a manuscript. V.S. was funded in part by the EMBL International PhD Programme and NIH U19MH114830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentine Svensson.

Ethics declarations

Competing interests

The author declares no competing interests.

Supplementary information

Supplementary Materials

Supplementary Methods and Supplementary Figs. 1 and 2

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Svensson, V. Droplet scRNA-seq is not zero-inflated. Nat Biotechnol 38, 147–150 (2020). https://doi.org/10.1038/s41587-019-0379-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41587-019-0379-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing