Next-generation interfaces for studying neural function

Abstract

Monitoring and modulating the diversity of signals used by neurons and glia in a closed-loop fashion is necessary to establish causative links between biochemical processes within the nervous system and observed behaviors. As developments in neural-interface hardware strive to keep pace with rapid progress in genetically encoded and synthetic reporters and modulators of neural activity, the integration of multiple functional features becomes a key requirement and a pressing challenge in the field of neural engineering. Electrical, optical and chemical approaches have been used to manipulate and record neuronal activity in vivo, with a recent focus on technologies that both integrate multiple modes of interaction with neurons into a single device and enable bidirectional communication with neural circuits with enhanced spatiotemporal precision. These technologies not only are facilitating a greater understanding of the brain, spinal cord and peripheral circuits in the context of health and disease, but also are informing the development of future closed-loop therapies for neurological, neuro-immune and neuroendocrine conditions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Overview of neuronal communication.

Debbie Maizels/Springer Nature

Fig. 2: Probes for electrical stimulation and recording of neural activity.

Debbie Maizels/Springer Nature

Fig. 3: Optical neural stimulation and recording via genetic or non-genetic tools; sensitivity, orthogonality and requirements for hardware.

Debbie Maizels/Springer Nature

Fig. 4: Chemical sensing with voltammetry and microdialysis.

Debbie Maizels/Springer Nature

Fig. 5: Technologies for chemical modulation and delivery.

Debbie Maizels/Springer Nature

Fig. 6: Multimodal integration.

Debbie Maizels/Springer Nature

References

  1. 1.

    Gooch, C. L., Pracht, E. & Borenstein, A. R. The burden of neurological disease in the United States: a summary report and call to action. Ann. Neurol. 81, 479–484 (2017).

    PubMed  Article  Google Scholar 

  2. 2.

    Rajasethupathy, P., Ferenczi, E. & Deisseroth, K. Targeting neural circuits. Cell 165, 524–534 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Nordhausen, C. T., Maynard, E. M. & Normann, R. A. Single unit recording capabilities of a 100 microelectrode array. Brain Res. 726, 129–140 (1996).

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Berger, H. Uber das Elektrenkephalogramm des Menschen. IV. Nov. Acta Leopoldina 6, 174–309 (1938).

    Google Scholar 

  5. 5.

    Campbell, P. K., Jones, K. E., Huber, R. J., Horch, K. W. & Normann, R. A. A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array. IEEE Trans. Biomed. Eng. 38, 758–768 (1991).

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Jun, J. J. et al. Fully integrated silicon probes for high-density recording of neural activity. Nature 551, 232–236 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Ward, M. P., Rajdev, P., Ellison, C. & Irazoqui, P. P. Toward a comparison of microelectrodes for acute and chronic recordings. Brain Res. 1282, 183–200 (2009).

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Nolta, N. F., Christensen, M. B., Crane, P. D., Skousen, J. L. & Tresco, P. A. BBB leakage, astrogliosis, and tissue loss correlate with silicon microelectrode array recording performance. Biomaterials 53, 753–762 (2015).

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Fu, T. M. et al. Stable long-term chronic brain mapping at the single-neuron level. Nat. Methods 13, 875–882 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Hong, G. et al. A method for single-neuron chronic recording from the retina in awake mice. Science 360, 1447–1451 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Lu, Y., Lyu, H., Richardson, A. G., Lucas, T. H. & Kuzum, D. Flexible neural electrode array based-on porous graphene for cortical microstimulation and sensing. Sci. Rep. 6, 33526 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Tybrandt, K. et al. High-density stretchable electrode grids for chronic neural recording. Adv. Mater. 30, e1706520 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  13. 13.

    Lu, C. et al. Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits. Sci. Adv. 3, e1600955 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Choi, S. et al. Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics. Nat Nanotechnol. 13, 1048–1056 (2018).

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Inal, S., Rivnay, J., Suiu, A.-O., Malliaras, G. G. & McCulloch, I. Conjugated polymers in bioelectronics. Acc. Chem. Res. 51, 1368–1376 (2018).

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Patel, P. R. et al. Insertion of linear 8.4 μm diameter 16 channel carbon fiber electrode arrays for single unit recordings. J. Neural Eng. 12, 046009 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Patel, P. R. et al. Chronic in vivo stability assessment of carbon fiber microelectrode arrays. J. Neural Eng. 13, 066002 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Khodagholy, D. et al. NeuroGrid: recording action potentials from the surface of the brain. Nat. Neurosci. 18, 310–315 (2015).

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Rivnay, J. et al. Structural control of mixed ionic and electronic transport in conducting polymers. Nat. Commun. 7, 11287 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  20. 20.

    Zhou, A., Johnson, B. C. & Muller, R. Toward true closed-loop neuromodulation: artifact-free recording during stimulation. Curr. Opin. Neurobiol. 50, 119–127 (2018).

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Zemelman, B. V., Lee, G. A., Ng, M. & Miesenböck, G. Selective photostimulation of genetically chARGed neurons. Neuron 33, 15–22 (2002).

    CAS  Article  Google Scholar 

  22. 22.

    Deisseroth, K. & Hegemann, P. The form and function of channelrhodopsin. Science 357, eaan5544 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  23. 23.

    Liu, X. et al. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484, 381–385 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Felix-Ortiz, A. C., Burgos-Robles, A., Bhagat, N. D., Leppla, C. A. & Tye, K. M. Bidirectional modulation of anxiety-related and social behaviors by amygdala projections to the medial prefrontal cortex. Neuroscience 321, 197–209 (2016).

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Adamantidis, A. R., Zhang, F., Aravanis, A. M., Deisseroth, K. & de Lecea, L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450, 420–424 (2007).

    CAS  Article  Google Scholar 

  26. 26.

    Gradinaru, V., Mogri, M., Thompson, K. R., Henderson, J. M. & Deisseroth, K. Optical deconstruction of parkinsonian neural circuitry. Science 324, 354–359 (2009).

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Mager, T. et al. High frequency neural spiking and auditory signaling by ultrafast red-shifted optogenetics. Nat. Commun. 9, 1750 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  28. 28.

    Ronzitti, E. et al. Sub-millisecond optogenetic control of neuronal firing with two-photon holographic photoactivation of Chronos. J. Neurosci. 37, 10679–10689 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Tkatch, T. et al. Optogenetic control of mitochondrial metabolism and Ca2+ signaling by mitochondria-targeted opsins. Proc. Natl Acad. Sci. USA 114, E5167–E5176 (2017).

    CAS  PubMed  Google Scholar 

  30. 30.

    El-Gaby, M. et al. Archaerhodopsin selectively and reversibly silences synaptic transmission through altered pH. Cell Rep. 16, 2259–2268 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Grimm, C., Silapetere, A., Vogt, A., Bernal Sierra, Y. A. & Hegemann, P. Electrical properties, substrate specificity and optogenetic potential of the engineered light-driven sodium pump eKR2. Sci. Rep. 8, 9316 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  32. 32.

    Wietek, J. et al. Anion-conducting channelrhodopsins with tuned spectra and modified kinetics engineered for optogenetic manipulation of behavior. Sci. Rep. 7, 14957 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  33. 33.

    Chuong, A. S. et al. Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat. Neurosci. 17, 1123–1129 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Rost, B. R. et al. Optogenetic acidification of synaptic vesicles and lysosomes. Nat. Neurosci. 18, 1845–1852 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Scheib, U. et al. Rhodopsin-cyclases for photocontrol of cGMP/cAMP and 2.3 Å structure of the adenylyl cyclase domain. Nat. Commun. 9, 2046 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. 36.

    Pisanello, F. et al. Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber. Nat. Neurosci. 20, 1180–1188 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Wu, F. et al. Monolithically Integrated μLEDs on silicon neural probes for high-resolution optogenetic studies in behaving animals. Neuron 88, 1136–1148 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Wang, J. et al. Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications. J. Neural Eng. 9, 016001 (2012).

    Article  Google Scholar 

  39. 39.

    Jeong, J. W. et al. Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell 162, 662–674 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Lee, J., Ozden, I., Song, Y.-K. & Nurmikko, A. V. Transparent intracortical microprobe array for simultaneous spatiotemporal optical stimulation and multichannel electrical recording. Nat. Methods 12, 1157–1162 (2015).

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Park, S. et al. One-step optogenetics with multifunctional flexible polymer fibers. Nat. Neurosci. 20, 612–619 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Canales, A. et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 33, 277–284 (2015).

    CAS  Article  Google Scholar 

  43. 43.

    Chen, R., Canales, A. & Anikeeva, P. Neural recording and modulation technologies. Nat. Rev. Mater. 2, 16093 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Rost, B. R., Schneider-Warme, F., Schmitz, D. & Hegemann, P. Optogenetic tools for subcellular applications in neuroscience. Neuron 96, 572–603 (2017).

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Wang, W. et al. A light- and calcium-gated transcription factor for imaging and manipulating activated neurons. Nat. Biotechnol. 35, 864–871 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Lee, D., Hyun, J. H., Jung, K., Hannan, P. & Kwon, H. B. A calcium- and light-gated switch to induce gene expression in activated neurons. Nat. Biotechnol. 35, 858–863 (2017).

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Taslimi, A. et al. Optimized second-generation CRY2–CIB dimerizers and photoactivatable Cre recombinase. Nat. Chem. Biol. 12, 425–430 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    O’Banion, C. P. et al. Design and profiling of a subcellular targeted optogenetic cAMP-dependent protein kinase. Cell. Chem. Biol. 25, 100–109.e8 (2018).

    Google Scholar 

  49. 49.

    Kim, E. H., Chin, G., Rong, G., Poskanzer, K. E. & Clark, H. A. Optical probes for neurobiological sensing and imaging. Acc. Chem. Res. 51, 1023–1032 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Allen, W. E. et al. Global representations of goal-directed behavior in distinct cell types of mouse neocortex. Neuron 94, 891–907.e6 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Ohkura, M. et al. Genetically encoded green fluorescent Ca2+ indicators with improved detectability for neuronal Ca2+ signals. PLoS One 7, e51286 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Dana, H. et al. Sensitive red protein calcium indicators for imaging neural activity. eLife 5, e12727 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  53. 53.

    Piatkevich, K. D. et al. A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters. Nat. Chem. Biol. 14, 352–360 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Lou, S. et al. Genetically targeted all-optical electrophysiology with a transgenic Cre-dependent optopatch mouse. J. Neurosci. 36, 11059–11073 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Bolbat, A. & Schultz, C. Recent developments of genetically encoded optical sensors for cell biology. Biol. Cell 109, 1–23 (2017).

    PubMed  Article  Google Scholar 

  56. 56.

    Lin, M. Z. & Schnitzer, M. J. Genetically encoded indicators of neuronal activity. Nat. Neurosci. 19, 1142–1153 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  57. 57.

    Marvin, J. S. et al. Stability, affinity and chromatic variants of the glutamate sensor iGluSnFR. Nat. Methods 15, 936–939 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Patriarchi, T. et al. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360, eaat4422 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  59. 59.

    Sun, F. et al. A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell 174, 481–496.e19 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Jing, M. et al. A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies. Nat. Biotechnol. 36, 726–737 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Zhang, W. H. et al. Monitoring hippocampal glycine with the computationally designed optical sensor GlyFS. Nat. Chem. Biol. 14, 861–869 (2018).

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Flusberg, B. A. et al. High-speed, miniaturized fluorescence microscopy in freely moving mice. Nat. Methods 5, 935–938 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Ghosh, K. K. et al. Miniaturized integration of a fluorescence microscope. Nat. Methods 8, 871–878 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Zong, W. et al. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat. Methods 14, 713–719 (2017).

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Gunaydin, L. A. et al. Natural neural projection dynamics underlying social behavior. Cell 157, 1535–1551 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    Kim, C. K. et al. Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain. Nat. Methods 13, 325–328 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  67. 67.

    Marshall, J. D. et al. Cell-type-specific optical recording of membrane voltage dynamics in freely moving mice. Cell 167, 1650–1662.e15 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68.

    Turtaev, S. et al. High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging. Light Sci. Appl. 7, 92 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  69. 69.

    Lu, L. et al. Wireless optoelectronic photometers for monitoring neuronal dynamics in the deep brain. Proc. Natl Acad. Sci. USA 115, E1374–E1383 (2018).

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Anderzhanova, E. & Wotjak, C. T. Brain microdialysis and its applications in experimental neurochemistry. Cell Tissue Res. 354, 27–39 (2013).

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Robinson, D. L., Hermans, A., Seipel, A. T. & Wightman, R. M. Monitoring rapid chemical communication in the brain. Chem. Rev. 108, 2554–2584 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    Roberts, J. G. & Sombers, L. A. Fast-scan cyclic voltammetry: chemical sensing in the brain and beyond. Anal. Chem. 90, 490–504 (2018).

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Rodeberg, N. T. et al. Construction of training sets for valid calibration of in vivo cyclic voltammetric data by principal component analysis. Anal. Chem. 87, 11484–11491 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74.

    Johnson, J. A., Rodeberg, N. T. & Wightman, R. M. Failure of standard training sets in the analysis of fast-scan cyclic voltammetry data. ACS Chem. Neurosci. 7, 349–359 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Rodeberg, N. T., Sandberg, S. G., Johnson, J. A., Phillips, P. E. M. & Wightman, R. M. Hitchhiker’s Guide to Voltammetry: acute and chronic electrodes for in vivo fast-scan cyclic voltammetry. ACS Chem. Neurosci. 8, 221–234 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Schwerdt, H. N. et al. Long-term dopamine neurochemical monitoring in primates. Proc. Natl Acad. Sci. USA 114, 13260–13265 (2017).

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    Clark, J. J. et al. Chronic microsensors for longitudinal, subsecond dopamine detection in behaving animals. Nat. Methods 7, 126–129 (2010).

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Hobbs, C. N., Johnson, J. A., Verber, M. D. & Mark Wightman, R. An implantable multimodal sensor for oxygen, neurotransmitters, and electrophysiology during spreading depolarization in the deep brain. Analyst 142, 2912–2920 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. 79.

    Hamid, A. A. et al. Mesolimbic dopamine signals the value of work. Nat. Neurosci. 19, 117–126 (2016).

    CAS  PubMed  Article  Google Scholar 

  80. 80.

    Bennet, K. E. et al. A diamond-based electrode for detection of neurochemicals in the human brain. Front. Hum. Neurosci. 10, 102 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  81. 81.

    Taylor, I. M. et al. Enhanced dopamine detection sensitivity by PEDOT/graphene oxide coating on in vivo carbon fiber electrodes. Biosens. Bioelectron. 89, 400–410 (2017).

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Wilson, L. R., Panda, S., Schmidt, A. C. & Sombers, L. A. Selective and mechanically robust sensors for electrochemical measurements of real-time hydrogen peroxide dynamics in vivo. Anal. Chem. 90, 888–895 (2018).

    CAS  PubMed  Article  Google Scholar 

  83. 83.

    Smith, S. K. et al. Simultaneous voltammetric measurements of glucose and dopamine demonstrate the coupling of glucose availability with increased metabolic demand in the rat striatum. ACS Chem. Neurosci. 8, 272–280 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84.

    Lugo-Morales, L. Z. et al. Enzyme-modified carbon-fiber microelectrode for the quantification of dynamic fluctuations of nonelectroactive analytes using fast-scan cyclic voltammetry. Anal. Chem. 85, 8780–8786 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Burmeister, J. J., Palmer, M. & Gerhardt, G. A. L-lactate measures in brain tissue with ceramic-based multisite microelectrodes. Biosens. Bioelectron. 20, 1772–1779 (2005).

    CAS  PubMed  Article  Google Scholar 

  86. 86.

    Burmeister, J. J. et al. Ceramic-based multisite microelectrode arrays for simultaneous measures of choline and acetylcholine in CNS. Biosens. Bioelectron. 23, 1382–1389 (2008).

    CAS  PubMed  Article  Google Scholar 

  87. 87.

    Day, B. K., Pomerleau, F., Burmeister, J. J., Huettl, P. & Gerhardt, G. A. Microelectrode array studies of basal and potassium-evoked release of L-glutamate in the anesthetized rat brain. J. Neurochem. 96, 1626–1635 (2006).

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Ngernsutivorakul, T., White, T. S. & Kennedy, R. T. Microfabricated probes for studying brain chemistry: a review. ChemPhysChem 19, 1128–1142 (2018).

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Zestos, A. G. & Kennedy, R. T. Microdialysis coupled with LC-MS/MS for in vivo neurochemical monitoring. AAPS J. 19, 1284–1293 (2017).

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Wong, J.-M. T. et al. Benzoyl chloride derivatization with liquid chromatography-mass spectrometry for targeted metabolomics of neurochemicals in biological samples. J. Chromatogr. A 1446, 78–90 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. 91.

    Rogers, M. L. et al. Simultaneous monitoring of potassium, glucose and lactate during spreading depolarization in the injured human brain: proof of principle of a novel real-time neurochemical analysis system, continuous online microdialysis. J. Cereb. Blood Flow Metab. 37, 1883–1895 (2017).

    CAS  PubMed  Article  Google Scholar 

  92. 92.

    Papadimitriou, K. I. et al. High-performance bioinstrumentation for real-time neuroelectrochemical traumatic brain injury monitoring. Front. Hum. Neurosci. 10, 212 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  93. 93.

    Wang, M., Roman, G. T., Schultz, K., Jennings, C. & Kennedy, R. T. Improved temporal resolution for in vivo microdialysis by using segmented flow. Anal. Chem. 80, 5607–5615 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    Lee, W. H. et al. Microfabrication and in vivo performance of a microdialysis probe with embedded membrane. Anal. Chem. 88, 1230–1237 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. 95.

    Quiroz, C. et al. Local control of extracellular dopamine levels in the medial nucleus accumbens by a glutamatergic projection from the infralimbic cortex. J. Neurosci. 36, 851–859 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. 96.

    Al-Hasani, R. et al. In vivo detection of optically-evoked opioid peptide release. eLife 7, e36520 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  97. 97.

    Alexander, G. M. et al. Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron 63, 27–39 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. 98.

    Vardy, E. et al. A new DREADD facilitates the multiplexed chemogenetic interrogation of behavior. Neuron 86, 936–946 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. 99.

    Hüll, K., Morstein, J. & Trauner, D. In vivo photopharmacology. Chem. Rev. 118, 10710–10747 (2018).

    PubMed  Article  CAS  Google Scholar 

  100. 100.

    Broichhagen, J., Frank, J. A. & Trauner, D. A roadmap to success in photopharmacology. Acc. Chem. Res. 48, 1947–1960 (2015).

    CAS  PubMed  Article  Google Scholar 

  101. 101.

    Banala, S. et al. Photoactivatable drugs for nicotinic optopharmacology. Nat. Methods 15, 347–350 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. 102.

    Dong, M., Babalhavaeji, A., Samanta, S., Beharry, A. A. & Woolley, G. A. Red-shifting azobenzene photoswitches for in vivo use. Acc. Chem. Res. 48, 2662–2670 (2015).

    CAS  PubMed  Article  Google Scholar 

  103. 103.

    Wagner, N., Stephan, M., Höglinger, D. & Nadler, A. A click cage: organelle-specific uncaging of lipid messengers. Angew. Chem. Int. Ed. Engl. 57, 13339–13343 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. 104.

    Nadler, A. et al. Exclusive photorelease of signalling lipids at the plasma membrane. Nat. Commun. 6, 10056 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. 105.

    Yang, G. et al. Genetic targeting of chemical indicators in vivo. Nat. Methods 12, 137–139 (2015).

    CAS  PubMed  Article  Google Scholar 

  106. 106.

    Shields, B. C. et al. Deconstructing behavioral neuropharmacology with cellular specificity. Science 356, eaaj1682 (2017).

    Article  CAS  Google Scholar 

  107. 107.

    Berry, M. H. et al. Restoration of patterned vision with an engineered photoactivatable G protein-coupled receptor. Nat. Commun. 8, 1862 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  108. 108.

    Levitz, J. et al. Dual optical control and mechanistic insights into photoswitchable group II and III metabotropic glutamate receptors. Proc. Natl Acad. Sci. USA 114, E3546–E3554 (2017).

    CAS  PubMed  Article  Google Scholar 

  109. 109.

    Takemoto, K. et al. Optical inactivation of synaptic AMPA receptors erases fear memory. Nat. Biotechnol. 35, 38–47 (2017).

    CAS  PubMed  Article  Google Scholar 

  110. 110.

    Tischbirek, C., Birkner, A., Jia, H., Sakmann, B. & Konnerth, A. Deep two-photon brain imaging with a red-shifted fluorometric Ca2+ indicator. Proc. Natl Acad. Sci. USA 112, 11377–11382 (2015).

    CAS  PubMed  Article  Google Scholar 

  111. 111.

    Deal, P. E., Kulkarni, R. U., Al-Abdullatif, S. H. & Miller, E. W. Isomerically pure tetramethylrhodamine voltage reporters. J. Am. Chem. Soc. 138, 9085–9088 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  112. 112.

    Martineau, M. et al. Semisynthetic fluorescent pH sensors for imaging exocytosis and endocytosis. Nat. Commun. 8, 1412 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  113. 113.

    Sallin, O. et al. Semisynthetic biosensors for mapping cellular concentrations of nicotinamide adenine dinucleotides. eLife 7, e32638 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  114. 114.

    Shin, H. et al. Neural probes with multi-drug delivery capability. Lab Chip 15, 3730–3737 (2015).

    CAS  PubMed  Article  Google Scholar 

  115. 115.

    Uguz, I. et al. A microfluidic ion pump for in vivo drug delivery. Adv. Mater. 29, 1701217 (2017).

    Article  CAS  Google Scholar 

  116. 116.

    Schubert, R. et al. Virus stamping for targeted single-cell infection in vitro and in vivo. Nat. Biotechnol. 36, 81–88 (2018).

    CAS  PubMed  Article  Google Scholar 

  117. 117.

    Jackman, S. L. et al. Silk fibroin films facilitate single-step targeted expression of optogenetic proteins. Cell Rep. 22, 3351–3361 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. 118.

    Chan, K. Y. et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat. Neurosci. 20, 1172–1179 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. 119.

    Zhao, Z. et al. Nanoelectronic coating enabled versatile multifunctional neural probes. Nano Lett. 17, 4588–4595 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  120. 120.

    Dagdeviren, C. et al. Miniaturized neural system for chronic, local intracerebral drug delivery. Sci. Transl. Med. 10, eaan2742 (2018).

    PubMed  Article  CAS  Google Scholar 

  121. 121.

    Kampasi, K. et al. Fiberless multicolor neural optoelectrode for in vivo circuit analysis. Sci. Rep. 6, 30961 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  122. 122.

    Kampasi, K. et al. Dual color optogenetic control of neural populations using low-noise, multishank optoelectrodes. Microsyst. Nanoeng. 4, 10 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  123. 123.

    Minev, I. R. et al. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015).

    CAS  PubMed  Article  Google Scholar 

  124. 124.

    Petit-Pierre, G., Bertsch, A. & Renaud, P. Neural probe combining microelectrodes and a droplet-based microdialysis collection system for high temporal resolution sampling. Lab Chip 16, 917–924 (2016).

    CAS  PubMed  Article  Google Scholar 

  125. 125.

    Lee, W. et al. Transparent, conformable, active multielectrode array using organic electrochemical transistors. Proc. Natl Acad. Sci. USA 114, 10554–10559 (2017).

    CAS  PubMed  Article  Google Scholar 

  126. 126.

    Park, D. W. et al. Electrical neural stimulation and simultaneous in vivo monitoring with transparent graphene electrode arrays implanted in GCaMP6f mice. ACS Nano 12, 148–157 (2018).

    CAS  PubMed  Article  Google Scholar 

  127. 127.

    Thunemann, M. et al. Deep 2-photon imaging and artifact-free optogenetics through transparent graphene microelectrode arrays. Nat. Commun. 9, 2035 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  128. 128.

    Kuzum, D. et al. Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging. Nat. Commun. 5, 5259 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  129. 129.

    Jiang, Y. et al. Rational design of silicon structures for optically controlled multiscale biointerfaces. Nat. Biomed. Eng. 2, 508–521 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  130. 130.

    Kilias, A. et al. Optogenetic entrainment of neural oscillations with hybrid fiber probes. J. Neural Eng. 15, 056006 (2018).

    PubMed  Article  Google Scholar 

  131. 131.

    Rein, M. et al. Diode fibres for fabric-based optical communications. Nature 560, 214–218 (2018).

    CAS  PubMed  Article  Google Scholar 

  132. 132.

    Qu, Y. et al. Superelastic multimaterial electronic and photonic fibers and devices via thermal drawing. Adv. Mater. 30, e1707251 (2018).

    PubMed  Article  CAS  Google Scholar 

  133. 133.

    Grena, B. et al. Thermally-drawn fibers with spatially-selective porous domains. Nat. Commun. 8, 364 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  134. 134.

    Montgomery, K. L., Iyer, S. M., Christensen, A. J., Deisseroth, K. & Delp, S. L. Beyond the brain: optogenetic control in the spinal cord and peripheral nervous system. Sci. Transl. Med. 8, 337rv5 (2016).

    PubMed  Article  CAS  Google Scholar 

  135. 135.

    Shemesh, O. A. et al. Temporally precise single-cell-resolution optogenetics. Nat. Neurosci. 20, 1796–1806 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  136. 136.

    Berlin, S. et al. Photoactivatable genetically encoded calcium indicators for targeted neuronal imaging. Nat. Methods 12, 852–858 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  137. 137.

    Kandel, E. R. et al. Principles of Neural Science 5th edn (McGraw-Hill Education/Medical, 2012).

  138. 138.

    Pomeroy, J. E., Nguyen, H. X., Hoffman, B. D. & Bursac, N. Genetically encoded photoactuators and photosensors for characterization and manipulation of pluripotent stem cells. Theranostics 7, 3539–3558 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Institute of Neurological Disorders and Stroke (5R01NS086804), the National Institutes of Health BRAIN Initiative (1R01MH111872), the National Science Foundation through the Center for Materials Science and Engineering (DMR-1419807) and the Center for Neurotechnology (EEC-1028725), and by the McGovern Institute for Brain Research at MIT.

Author information

Affiliations

Authors

Contributions

J.A.F. and M.-J.A. researched data for the article. J.A.F., M.-J.A. and P.A. discussed the article scope and wrote the manuscript.

Corresponding author

Correspondence to Polina Anikeeva.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Frank, J.A., Antonini, MJ. & Anikeeva, P. Next-generation interfaces for studying neural function. Nat Biotechnol 37, 1013–1023 (2019). https://doi.org/10.1038/s41587-019-0198-8

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing