Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower respiratory infection


The gold standard for clinical diagnosis of bacterial lower respiratory infections (LRIs) is culture, which has poor sensitivity and is too slow to guide early, targeted antimicrobial therapy. Metagenomic sequencing could identify LRI pathogens much faster than culture, but methods are needed to remove the large amount of human DNA present in these samples for this approach to be feasible. We developed a metagenomics method for bacterial LRI diagnosis that features efficient saponin-based host DNA depletion and nanopore sequencing. Our pilot method was tested on 40 samples, then optimized and tested on a further 41 samples. Our optimized method (6 h from sample to result) was 96.6% sensitive and 41.7% specific for pathogen detection compared with culture and we could accurately detect antibiotic resistance genes. After confirmatory quantitative PCR and pathobiont-specific gene analyses, specificity and sensitivity increased to 100%. Nanopore metagenomics can rapidly and accurately characterize bacterial LRIs and might contribute to a reduction in broad-spectrum antibiotic use.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Schematic representation of the metagenomic pipeline.
Fig. 2: Bacterial genome assembly, genome coverage and antibiotic gene detection with depleted versus undepleted samples.

Data availability

All clinical sample sequence data and assemblies are available via European Nucleotide Archive (ENA) under study accession number PRJEB30781.


  1. 1.

    National Institute for Health and Care Excellence (NICE). Respiratory Tract Infections (Self-limiting): Prescribing Antibiotics NICE Clinical Guideline 69 (Centre for Clinical Practice, 2008);

  2. 2.

    Chalmers, J. et al. Community-acquired pneumonia in the United Kingdom: a call to action. Pneumonia 9, 15 (2017).

    Article  Google Scholar 

  3. 3.

    Enne, V. I., Personne, Y., Grgic, L., Gant, V. & Zumla, A. Aetiology of hospital-acquired pneumonia and trends in antimicrobial resistance. Curr. Opin. Pulm. Med. 20, 252–258 (2014).

    CAS  Article  Google Scholar 

  4. 4.

    Carroll, K. C. Laboratory diagnosis of lower respiratory tract infections: controversy and conundrums. J. Clin. Microbiol. 40, 3115–3120 (2002).

    Article  Google Scholar 

  5. 5.

    Kollef, M. H. Microbiological diagnosis of ventilator-associated pneumonia. Am. J. Respir. Crit. Care Med. 173, 1182–1184 (2006).

    Article  Google Scholar 

  6. 6.

    Moran, G. J., Rothman, R. E. & Volturo, G. A. Emergency management of community-acquired bacterial pneumonia: what is new since the 2007 Infectious Diseases Society of America/American Thoracic Society guidelines. Am. J. Emerg. Med. 31, 602–612 (2013).

    Article  Google Scholar 

  7. 7.

    Garcin, F. et al. Non-adherence to guidelines: an avoidable cause of failure of empirical antimicrobial therapy in the presence of difficult-to-treat bacteria. Intensive Care Med. 36, 75–82 (2010).

    Article  Google Scholar 

  8. 8.

    Lim, W. S. et al. BTS guidelines for the management of community acquired pneumonia in adults: update 2009. Thorax 64, iii1 (2009).

    Article  Google Scholar 

  9. 9.

    Burnham, C. A. & Carroll, K. C. Diagnosis of Clostridium difficile infection: an ongoing conundrum for clinicians and for clinical laboratories. Clin. Microbiol. Rev. 26, 604–630 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    Lees, E. A., Miyajima, F., Pirmohamed, M. & Carrol, E. D. The role of Clostridium difficile in the paediatric and neonatal gut—a narrative review. Eur. J. Clin. Microbiol. Infect. Dis. 35, 1047–1057 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Cookson, W. O. C. M., Cox, M. J. & Moffatt, M. F. New opportunities for managing acute and chronic lung infections. Nat. Rev. Microbiol. 16, 111 (2017).

    Article  Google Scholar 

  12. 12.

    Davies, S. C. in Annual Report of the Chief Medical Officer Ch. 1 (Department of Health, 2017);

  13. 13.

    UK Goverment. Tackling antimicrobial resistance 2019–2024. The UK’s five-year national action plan. (2019).

  14. 14.

    O’Neill, J. Tackling drug-resistant infections globally: final report and recommendations. in The Review on Microbial Resistance 1–84 (2016).

  15. 15.

    Fukumoto, H., Sato, Y., Hasegawa, H., Saeki, H. & Katano, H. Development of a new real-time PCR system for simultaneous detection of bacteria and fungi in pathological samples. Int. J. Clin. Exp. Pathol. 8, 15479–15488 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Hassibi, A. et al. Multiplexed identification, quantification and genotyping of infectious agents using a semiconductor biochip. Nat. Biotechnol. 36, 738–745 (2018).

    CAS  Article  Google Scholar 

  17. 17.

    Kais, M., Spindler, C., Kalin, M., Örtqvist, Å. & Giske, C. G. Quantitative detection of Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis in lower respiratory tract samples by real-time PCR. Diagn. Microbiol. Infect. Dis. 55, 169–178 (2006).

    CAS  Article  Google Scholar 

  18. 18.

    Kodani, M. et al. Application of TaqMan low-density arrays for simultaneous detection of multiple respiratory pathogens. J. Clin. Microbiol. 49, 2175–2182 (2011).

    Article  Google Scholar 

  19. 19.

    Hayon, J. A. N. et al. Role of serial routine microbiologic culture results in the initial management of ventilator-associated pneumonia. Am. J. Respir. Crit. Care Med. 165, 41–46 (2002).

    Article  Google Scholar 

  20. 20.

    Buchan, B. W. & Ledeboer, N. A. Emerging technologies for the clinical microbiology laboratory. Clin. Microbiol. Rev. 27, 783 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    Huang, T.-D. et al. Analytical validation of a novel high multiplexing real-time PCR array for the identification of key pathogens causative of bacterial ventilator-associated pneumonia and their associated resistance genes. J. Antimicrob. Chemother. 68, 340–347 (2012).

    CAS  PubMed  Google Scholar 

  22. 22.

    Chiu, C. Y. & Miller, S. A. Clinical metagenomics. Nat. Rev. Genet. 20, 341–355 (2019).

    CAS  Article  Google Scholar 

  23. 23.

    Loman, N. J. et al. Performance comparison of benchtop high-throughput sequencing platforms. Nat. Biotechnol. 30, 434 (2012).

    CAS  Article  Google Scholar 

  24. 24.

    Strauch, B. et al. LiveKraken––real-time metagenomic classification of illumina data. Bioinformatics 34, 3750–3752 (2018).

    Article  Google Scholar 

  25. 25.

    Faria, N. R. et al. Establishment and cryptic transmission of Zika virus in Brazil and the Americas. Nature 546, 406 (2017).

    CAS  Article  Google Scholar 

  26. 26.

    Quick, J. et al. Real-time, portable genome sequencing for Ebola surveillance. Nature 530, 228 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Greninger, A. L. et al. Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis. Genome Med. 7, 99 (2015).

    Article  Google Scholar 

  28. 28.

    Schmidt, K. et al. Identification of bacterial pathogens and antimicrobial resistance directly from clinical urines by nanopore-based metagenomic sequencing. J. Antimicrob. Chemother. 72, 104–114 (2017).

    CAS  Article  Google Scholar 

  29. 29.

    Pendleton, K. M. et al. Rapid pathogen identification in bacterial pneumonia using real-time metagenomics. Am. J. Respir. Crit. Care Med. 196, 1610–1612 (2017).

    CAS  Article  Google Scholar 

  30. 30.

    Feehery, G. R. et al. A method for selectively enriching microbial DNA from contaminating vertebrate host DNA. PLoS ONE 8, e76096 (2013).

    CAS  Article  Google Scholar 

  31. 31.

    Hasan, M. R. et al. Depletion of human DNA in spiked clinical specimens for improvement of sensitivity of pathogen detection by next-generation sequencing. J. Clin. Microbiol. 54, 919–927 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    Marotz, C. A. et al. Improving saliva shotgun metagenomics by chemical host DNA depletion. Microbiome 6, 42 (2018).

    Article  Google Scholar 

  33. 33.

    Zelenin, S. et al. Microfluidic-based isolation of bacteria from whole blood for sepsis diagnostics. Biotechnol. Lett. 37, 825–830 (2015).

    CAS  Article  Google Scholar 

  34. 34.

    Couto, N. et al. Critical steps in clinical shotgun metagenomics for the concomitant detection and typing of microbial pathogens. Sci. Rep. 8, 13767 (2018).

    Article  Google Scholar 

  35. 35.

    McIntosh, J. Emergency pathology service. Lancet 247, 669–670 (1946).

    Article  Google Scholar 

  36. 36.

    Martner, A., Dahlgren, C., Paton, J. C. & Wold, A. E. Pneumolysin released during Streptococcus pneumoniae autolysis is a potent activator of intracellular oxygen radical production in neutrophils. Infect. Immun. 76, 4079–4087 (2008).

    CAS  Article  Google Scholar 

  37. 37.

    Chen, J. H. K. et al. Use of MALDI biotyper plus ClinProTools mass spectra analysis for correct identification of Streptococcus pneumoniae and Streptococcus mitis. J. Clin. Pathol. 68, 652–656 (2015).

    CAS  Article  Google Scholar 

  38. 38.

    Kutlu, S. S., Sacar, S., Cevahir, N. & Turgut, H. Community-acquired Streptococcus mitis meningitis: a case report. Int. J. Infect. Dis. 12, e107–e109 (2008).

    Article  Google Scholar 

  39. 39.

    Langelier, C. et al. Integrating host response and unbiased microbe detection for lower respiratory tract infection diagnosis in critically ill adults. Proc. Natl Acad. Sci. USA 115, E12353 (2018).

    CAS  Article  Google Scholar 

  40. 40.

    Eliopoulos, G. M. & Huovinen, P. Resistance to trimethoprim-sulfamethoxazole. Clin. Infect. Dis. 32, 1608–1614 (2001).

    Article  Google Scholar 

  41. 41.

    Enne, V. I., King, A., Livermore, D. M. & Hall, L. M. C. Sulfonamide resistance in Haemophilus influenzae mediated by acquisition of sul2 or a short insertion in chromosomal folP. Antimicrob. Agents Chemother. 46, 1934–1939 (2002).

    CAS  Article  Google Scholar 

  42. 42.

    Ashton, P. M. et al. MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat. Biotechnol. 33, 296 (2014).

    Article  Google Scholar 

  43. 43.

    Orlek, A. et al. Plasmid classification in an era of whole-genome sequencing: application in studies of antibiotic resistance epidemiology. Front. Microbiol. 8, 182 (2017).

    Article  Google Scholar 

  44. 44.

    Xia, Y. et al. MinION nanopore sequencing enables correlation between resistome phenotype and genotype of coliform bacteria in municipal sewage. Front. Microbiol. 8, 2105 (2017).

    Article  Google Scholar 

  45. 45.

    Leggett, R. M. et al. Rapid MinION metagenomic profiling of the preterm infant gut microbiota to aid in pathogen diagnostics. Preprint at biorxiv (2017).

  46. 46.

    Roberts, A. P. & Mullany, P. Tn916-like genetic elements: a diverse group of modular mobile elements conferring antibiotic resistance. FEMS Microbiol. Rev. 35, 856–871 (2011).

    CAS  Article  Google Scholar 

  47. 47.

    Santoro, F., Vianna, M. E. & Roberts, A. P. Variation on a theme; an overview of the Tn916/Tn1545 family of mobile genetic elements in the oral and nasopharyngeal streptococci. Front. Microbiol. 5, 535 (2014).

    Article  Google Scholar 

  48. 48.

    Tantivitayakul, P., Lapirattanakul, J., Vichayanrat, T. & Muadchiengka, T. Antibiotic resistance patterns and related mobile genetic elements of pneumococci and β-hemolytic streptococci in Thai healthy children. Indian J. Microbiol. 56, 417–425 (2016).

    CAS  Article  Google Scholar 

  49. 49.

    Deurenberg, R. H. et al. Application of next generation sequencing in clinical microbiology and infection prevention. J. Biotechnol. 243, 16–24 (2017).

    CAS  Article  Google Scholar 

  50. 50.

    Greninger, A. L. et al. Rapid metagenomic next-generation sequencing during an investigation of hospital-acquired human parainfluenza virus 3 infections. J. Clin. Microbiol. 55, 177–182 (2017).

    Article  Google Scholar 

  51. 51.

    Services Unit, Microbiology Services, Public Health England. UK standards for microbiology investigations: investigation of bronchoalveolar lavage, sputum and associated specimens. Bacteriology B57, 38 (2018).

  52. 52.

    Anscombe, C., Misra, R. V. & Gharbia, S. Whole genome amplification and sequencing of low cell numbers directly from a bacteria spiked blood model. Preprint at biorxiv

  53. 53.

    Kim, D., Song, L., Breitwieser, F. P. & Salzberg, S. L. Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Res. 26, 1721–1729 (2016).

    CAS  Article  Google Scholar 

  54. 54.

    Jia, B. et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 45, D566–D573 (2017).

    CAS  Article  Google Scholar 

  55. 55.

    Leggett, R. M., Heavens, D., Caccamo, M., Clark, M. D. & Davey, R. P. NanoOK: multi-reference alignment analysis of nanopore sequencing data, quality and error profiles. Bioinformatics 32, 142–144 (2015).

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Price, E. P. et al. Simultaneous identification of Haemophilus influenzae and Haemophilus haemolyticus using real-time PCR. Future Microbiol. 12, 585–593 (2017).

    CAS  Article  Google Scholar 

  57. 57.

    Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    CAS  Article  Google Scholar 

  58. 58.

    Koren, S., Walenz, B. P., Berlin, K., Miller, J. R. & Phillippy, A. M. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).

    CAS  Article  Google Scholar 

  59. 59.

    Koren, S. et al. De novo assembly of haplotype-resolved genomes with trio binning. Nat. Biotechnol. 36, 1174–1182 (2018).

    CAS  Article  Google Scholar 

  60. 60.

    Alikhan, N.-F., Petty, N. K., Ben Zakour, N. L. & Beatson, S. A. BLAST ring image generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12, 402 (2011).

    CAS  Article  Google Scholar 

Download references


This paper presents independent research funded by the National Institute for Health Research (NIHR) under its Program Grants for Applied Research Program (reference no. RP-PG-0514-20018, J.O.G., D.M.L., R.B. and H.R.), the UK Antimicrobial Resistance Cross Council Initiative (no. MR/N013956/1, J.O.G. and G.L.K.), Rosetrees Trust (no. A749, J.O.G.), the University of East Anglia (to J.O.G. and T.C.), Oxford Nanopore Technologies (to J.O.G., T.C., A.A. and D.J.T.), the Biotechnology and Biological Sciences Research Council (BBSRC) Institute Strategic Programme Microbes in the Food Chain BB/R012504/1 and its constituent projects BBS/E/F/000PR10348 and BBS/E/F/000PR10349 (J.O.G., J.W. and G.L.K.), MRC Doctoral Antimicrobial Research Training (DART) Industrial CASE Programme grant number MR/R015937/1 (J.O.G. and A.A.) and BBSRC grants (nos. BB/N023196/1 and BB/CSP17270/1, to R.M.L.). Part of the bioinformatics analysis was run on CLIMB-computing servers, an infrastructure supported by a grant from the UK Medical Research Council (no. MR/L015080/1).

Author information




The study was devised by J.O.G., J.W. and D.J.T. Laboratory work and data analysis were performed by T.C., G.L.K., A.A., H.R., R.B., D.M.L., R.M.L. and J.O.G. Clinical samples were collected and analyzed by C.J., S.G. and D.R. All authors contributed to writing and reviewing the manuscript.

Corresponding author

Correspondence to Justin O’Grady.

Ethics declarations

Competing interests

J.O.G., R.M.L., G.L.K. and T.C. received financial support for attending ONT and other conferences and/or an honorarium for speaking at ONT headquarters. J.O.G., A.A. and T.C. received funding and consumable support from ONT for PhD studentships. D.J.T. is a full-time employee and share-option holder of Oxford Nanopore Technologies Ltd. R.M.L. and J.O.G. received free flow cells as part of the MAP and MARC programs.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Fig. 1, Supplementary Tables 1–9

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Charalampous, T., Kay, G.L., Richardson, H. et al. Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower respiratory infection. Nat Biotechnol 37, 783–792 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing