Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Characterization of cell fate probabilities in single-cell data with Palantir

An Author Correction to this article was published on 18 September 2019

This article has been updated

Abstract

Single-cell RNA sequencing studies of differentiating systems have raised fundamental questions regarding the discrete versus continuous nature of both differentiation and cell fate. Here we present Palantir, an algorithm that models trajectories of differentiating cells by treating cell fate as a probabilistic process and leverages entropy to measure cell plasticity along the trajectory. Palantir generates a high-resolution pseudo-time ordering of cells and, for each cell state, assigns a probability of differentiating into each terminal state. We apply our algorithm to human bone marrow single-cell RNA sequencing data and detect important landmarks of hematopoietic differentiation. Palantir’s resolution enables the identification of key transcription factors that drive lineage fate choice and closely track when cells lose plasticity. We show that Palantir outperforms existing algorithms in identifying cell lineages and recapitulating gene expression trends during differentiation, is generalizable to diverse tissue types, and is well-suited to resolving less-studied differentiating systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Palantir characterizes cell fate choices in a continuous model of differentiation.
Fig. 2: Differentiation landscape of early human hematopoiesis.
Fig. 3: Palantir DP identifies landmarks of hematopoietic differentiation.
Fig. 4: Transcriptional regulation of erythroid differentiation.
Fig. 5: Palantir generalizes to mouse hematopoiesis and colon differentiation datasets.

Code availability

Palantir is available as a Python module at https://github.com/dpeerlab/Palantir/. A Jupyter notebook detailing the workflow including data preprocessing, running Palantir along with a demonstration of various plots, and visualizations is available at http://nbviewer.jupyter.org/github/dpeerlab/Palantir/blob/master/notebooks/Palantir_sample_notebook.ipynb. The code and data for this article, along with an accompanying computational environment, are available and executable online as a Code Ocean capsule: https://doi.org/10.24433/CO.6f3a9d2b-82d6-45bd-a583-5346a30e0c5d (ref. 58).

Data availability

Raw and processed data are available through the Human Cell Atlas data portal at https://data.humancellatlas.org/explore/projects/091cf39b-01bc-42e5-9437-f419a66c8a45.

Change history

  • 18 September 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. 1.

    Bendall, S. C. et al. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 157, 714–725 (2014).

    CAS  Article  Google Scholar 

  2. 2.

    Setty, M. et al. Wishbone identifies bifurcating developmental trajectories from single-cell data. Nat. Biotechnol. 34, 637–645 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    Haghverdi, L., Buttner, M., Wolf, F. A., Buettner, F. & Theis, F. J. Diffusion pseudotime robustly reconstructs lineage branching. Nat. Methods 13, 845–848 (2016).

    CAS  Article  Google Scholar 

  4. 4.

    Velten, L. et al. Human haematopoietic stem cell lineage commitment is a continuous process. Nat. Cell Biol. 19, 271–281 (2017).

    CAS  Article  Google Scholar 

  5. 5.

    Buenrostro, J. D. et al. Integrated single-cell analysis maps the continuous regulatory landscape of human hematopoietic differentiation. Cell 173, 1535–1548 e1516 (2018).

    CAS  Article  Google Scholar 

  6. 6.

    Paul, F. et al. Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 163, 1663–1677 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    Plass, M. et al. Cell type atlas and lineage tree of a whole complex animal by single-cell transcriptomics. Science 360, eaaq1723 (2018).

    Article  Google Scholar 

  8. 8.

    Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19, 477 (2018).

    Article  Google Scholar 

  9. 9.

    Stergachis, A. B. et al. Developmental fate and cellular maturity encoded in human regulatory DNA landscapes. Cell 154, 888–903 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    Corces, M. R. et al. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat. Genet. 48, 1193–1203 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Orkin, S. H. & Zon, L. I. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132, 631–644 (2008).

    CAS  Article  Google Scholar 

  12. 12.

    Amir el, A. D. et al. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat. Biotechnol. 31, 545–552 (2013).

    Article  Google Scholar 

  13. 13.

    Levine, J. H. et al. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162, 184–197 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    Coifman, R. R. et al. Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. Proc. Natl Acad. Sci. USA 102, 7426–7431 (2005).

    CAS  Article  Google Scholar 

  15. 15.

    Haber, A. L. et al. A single-cell survey of the small intestinal epithelium. Nature 551, 333–339 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    Hastie, T. J. & Tibshirani, R. J. Generalized Additive Models (Chapman & Hall/CRC, 1990).

  17. 17.

    Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    Dahlin, J. S. et al. A single-cell hematopoietic landscape resolves 8 lineage trajectories and defects in Kit mutant mice. Blood 131, e1–e11 (2018).

    CAS  Article  Google Scholar 

  19. 19.

    Azizi, E. et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 174, 1293–1308.e36 (2018).

    CAS  Article  Google Scholar 

  20. 20.

    Novershtern, N. et al. Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 144, 296–309 (2011).

    CAS  Article  Google Scholar 

  21. 21.

    Psaila, B. et al. Single-cell profiling of human megakaryocyte-erythroid progenitors identifies distinct megakaryocyte and erythroid differentiation pathways. Genome Biol. 17, 83 (2016).

    Article  Google Scholar 

  22. 22.

    Pei, W. et al. Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. Nature 548, 456–460 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Takubo, K. et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell 12, 49–61 (2013).

    CAS  Article  Google Scholar 

  24. 24.

    Majeti, R., Park, C. Y. & Weissman, I. L. Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. Cell Stem Cell 1, 635–645 (2007).

    CAS  Article  Google Scholar 

  25. 25.

    Mori, Y. et al. Identification of the human eosinophil lineage-committed progenitor: revision of phenotypic definition of the human common myeloid progenitor. J. Exp. Med. 206, 183–193 (2009).

    CAS  Article  Google Scholar 

  26. 26.

    Ravet, E. et al. Characterization of DNA-binding-dependent and -independent functions of SCL/TAL1 during human erythropoiesis. Blood 103, 3326–3335 (2004).

    CAS  Article  Google Scholar 

  27. 27.

    Siatecka, M. & Bieker, J. J. The multifunctional role of EKLF/KLF1 during erythropoiesis. Blood 118, 2044–2054 (2011).

    CAS  Article  Google Scholar 

  28. 28.

    Ferreira, R., Ohneda, K., Yamamoto, M. & Philipsen, S. GATA1 function, a paradigm for transcription factors in hematopoiesis. Mol. Cell. Biol. 25, 1215–1227 (2005).

    CAS  Article  Google Scholar 

  29. 29.

    Funnell, A. P. et al. Erythroid Kruppel-like factor directly activates the basic Kruppel-like factor gene in erythroid cells. Mol. Cell. Biol. 27, 2777–2790 (2007).

    CAS  Article  Google Scholar 

  30. 30.

    Nerlov, C., Querfurth, E., Kulessa, H. & Graf, T. GATA-1 interacts with the myeloid PU.1 transcription factor and represses PU.1-dependent transcription. Blood 95, 2543–2551 (2000).

    CAS  PubMed  Google Scholar 

  31. 31.

    Zhang, P. et al. PU.1 inhibits GATA-1 function and erythroid differentiation by blocking GATA-1 DNA binding. Blood 96, 2641–2648 (2000).

    CAS  PubMed  Google Scholar 

  32. 32.

    May, G. et al. Dynamic analysis of gene expression and genome-wide transcription factor binding during lineage specification of multipotent progenitors. Cell Stem Cell 13, 754–768 (2013).

    CAS  Article  Google Scholar 

  33. 33.

    Tusi, B. K. et al. Population snapshots predict early haematopoietic and erythroid hierarchies. Nature 555, 54–60 (2018).

    CAS  Article  Google Scholar 

  34. 34.

    Antebi, Y. E. et al. Mapping differentiation under mixed culture conditions reveals a tunable continuum of T cell fates. PLoS Biol. 11, e1001616 (2013).

    CAS  Article  Google Scholar 

  35. 35.

    Herring, C. A. et al. Unsupervised trajectory analysis of single-cell RNA-seq and imaging data reveals alternative tuft cell origins in the gut. Cell Syst. 6, 37–51 e39 (2018).

    CAS  Article  Google Scholar 

  36. 36.

    Li, H. & Jasper, H. Gastrointestinal stem cells in health and disease: from flies to humans. Dis. Model Mech. 9, 487–499 (2016).

    Article  Google Scholar 

  37. 37.

    Herman, J. S., Sagar & Grun, D. FateID infers cell fate bias in multipotent progenitors from single-cell RNA-seq data. Nat. Methods 15, 379–386 (2018).

    CAS  Article  Google Scholar 

  38. 38.

    Yang, J., Zhang, L., Yu, C., Yang, X. F. & Wang, H. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark. Res. 2, 1 (2014).

    Article  Google Scholar 

  39. 39.

    Benschop, R. J. & Cambier, J. C. B cell development: signal transduction by antigen receptors and their surrogates. Curr. Opin. Immunol. 11, 143–151 (1999).

    CAS  Article  Google Scholar 

  40. 40.

    Merad, M., Sathe, P., Helft, J., Miller, J. & Mortha, A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol. 31, 563–604 (2013).

    CAS  Article  Google Scholar 

  41. 41.

    Hoppe, P. S. et al. Early myeloid lineage choice is not initiated by random PU.1 to GATA1 protein ratios. Nature 535, 299–302 (2016).

    CAS  Article  Google Scholar 

  42. 42.

    Ibarra-Soria, X. et al. Defining murine organogenesis at single-cell resolution reveals a role for the leukotriene pathway in regulating blood progenitor formation. Nat. Cell Biol. 20, 127–134 (2018).

    CAS  Article  Google Scholar 

  43. 43.

    Regev, A. et al. The human cell atlas. Elife 6, e27041 (2017).

    Article  Google Scholar 

  44. 44.

    Farrell, J. A. et al. Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. Science 360, 981–987 (2018).

    Article  Google Scholar 

  45. 45.

    Kotton, D. N. & Morrisey, E. E. Lung regeneration: mechanisms, applications and emerging stem cell populations. Nat. Med. 20, 822–832 (2014).

    CAS  Article  Google Scholar 

  46. 46.

    Beck, B. & Blanpain, C. Unravelling cancer stem cell potential. Nat. Rev. Cancer 13, 727–738 (2013).

    CAS  Article  Google Scholar 

  47. 47.

    Raj, B. et al. Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain. Nat. Biotechnol. 36, 442–450 (2018).

    CAS  Article  Google Scholar 

  48. 48.

    Spanjaard, B. et al. Simultaneous lineage tracing and cell-type identification using CRISPR–Cas9-induced genetic scars. Nat. Biotechnol. 36, 469–473 (2018).

    CAS  Article  Google Scholar 

  49. 49.

    Biezuner, T. et al. A generic, cost-effective, and scalable cell lineage analysis platform. Genome Res. 26, 1588–1599 (2016).

    CAS  Article  Google Scholar 

  50. 50.

    Macaulay, I. C. et al. G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat. Methods 12, 519–522 (2015).

    CAS  Article  Google Scholar 

  51. 51.

    van Dijk, D. et al. Recovering gene interactions from single-cell data using data diffusion. Cell 174, 716–729.e27 (2018).

    CAS  Article  Google Scholar 

  52. 52.

    Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278 (2015).

    Article  Google Scholar 

  53. 53.

    Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015).

    CAS  Article  Google Scholar 

  54. 54.

    Buettner, F. et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol. 33, 155–160 (2015).

    CAS  Article  Google Scholar 

  55. 55.

    Buettner, F., Pratanwanich, N., McCarthy, D. J., Marioni, J. C. & Stegle, O. f-scLVM: scalable and versatile factor analysis for single-cell RNA-seq. Genome Biol. 18, 212 (2017).

    Article  Google Scholar 

  56. 56.

    van der Maaten, L. P. J. & Hinton, G. E. Visualizing high-dimensional data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).

    Google Scholar 

  57. 57.

    Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).

    Article  Google Scholar 

  58. 58.

    Setty, M. et al. Characterization of cell fate probabilities in single-cell data with Palantir. Code Ocean Capsule https://doi.org/10.24433/CO.6f3a9d2b-82d6-45bd-a583-5346a30e0c5d (2018).

Download references

Acknowledgements

We thank R. Sharma for valuable conversations related to this manuscript, C. Trasande and T. Nawy for helping to write the manuscript, and E. Azizi, C. Burdziak, and K. Hadjantonakis for valuable comments. This study was supported by NIH grants nos. NIH DP1-HD084071 and NIH R01CA164729, Cancer Center Support Grant no. P30 CA008748, and the Gerry Center for Metastasis and Tumor Ecosystems.

Author information

Affiliations

Authors

Contributions

M.S. and D.P. conceived the study, designed and developed Palantir, developed additional analysis methods, analyzed the data, and wrote the manuscript. M.S. implemented Palantir and all other analysis methods. V.K. and L.M. designed, optimized, and executed all single-cell RNA-seq experiments. J.L. and D.P. developed an early theory on application of Markov chains to single-cell data. M.S. and A.G. developed trend-based clustering analysis.

Corresponding author

Correspondence to Dana Pe’er.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Figures and Text

Supplementary Figures 1–27 and Supplementary Notes 1–6

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Setty, M., Kiseliovas, V., Levine, J. et al. Characterization of cell fate probabilities in single-cell data with Palantir. Nat Biotechnol 37, 451–460 (2019). https://doi.org/10.1038/s41587-019-0068-4

Download citation

Further reading

Search

Quick links