NFIA is a gliogenic switch enabling rapid derivation of functional human astrocytes from pluripotent stem cells


The mechanistic basis of gliogenesis, which occurs late in human development, is poorly understood. Here we identify nuclear factor IA (NFIA) as a molecular switch inducing human glial competency. Transient expression of NFIA is sufficient to trigger glial competency of human pluripotent stem cell-derived neural stem cells within 5 days and to convert these cells into astrocytes in the presence of glial-promoting factors, as compared to 3–6 months using current protocols. NFIA-induced astrocytes promote synaptogenesis, exhibit neuroprotective properties, display calcium transients in response to appropriate stimuli and engraft in the adult mouse brain. Differentiation involves rapid but reversible chromatin remodeling, glial fibrillary acidic protein (GFAP) promoter demethylation and a striking lengthening of the G1 cell cycle phase. Genetic or pharmacological manipulation of G1 length partially mimics NFIA function. We used the approach to generate astrocytes with region-specific or reactive features. Our study defines key mechanisms of the gliogenic switch and enables the rapid production of human astrocytes for disease modeling and regenerative medicine.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Transient expression of NFIA in neuroepithelial stem cells confers glial competency.
Fig. 2: NFIA-induced astrocytes are functional.
Fig. 3: NFIA cannot maintain the glial-competent state.
Fig. 4: NFIA expression leads to a slower G1 cell cycle phase to induce glial competency.

Data availability

The data and reagents in this study are available from the corresponding author upon reasonable request. All FASTQ files and Supplementary files were uploaded to National Center for Biotechnology Information Gene Expression Omnibus under accession code GSE104232.


  1. 1.

    Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

    CAS  Article  Google Scholar 

  2. 2.

    Zhang, Y. et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89, 37–53 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    Molofsky, A. V. et al. Astrocytes and disease: a neurodevelopmental perspective. Genes Dev. 26, 891–907 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    Sauvageot, C. M. & Stiles, C. D. Molecular mechanisms controlling cortical gliogenesis. Curr. Opin. Neurobiol. 12, 244–249 (2002).

    CAS  Article  Google Scholar 

  5. 5.

    Studer, L., Vera, E. & Cornacchia, D. Programming and reprogramming cellular age in the era of induced pluripotency. Cell Stem Cell 16, 591–600 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    Tcw, J. et al. An efficient platform for astrocyte differentiation from human induced pluripotent stem cells. Stem Cell Reports 9, 600–614 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    Krencik, R. et al. Dysregulation of astrocyte extracellular signaling in Costello syndrome. Sci. Transl. Med. 7, 286ra266 (2015).

    Article  Google Scholar 

  8. 8.

    Tao, Y. & Zhang, S. C. Neural subtype specification from human pluripotent stem cells. Cell Stem Cell 19, 573–586 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    Chandrasekaran, A., Avci, H. X., Leist, M., Kobolak, J. & Dinnyes, A. Astrocyte differentiation of human pluripotent stem cells: new tools for neurological disorder research. Front. Cell. Neurosci. 10, 215 (2016).

    Article  Google Scholar 

  10. 10.

    Santos, R. et al. Differentiation of inflammation-responsive astrocytes from glial progenitors generated from human induced pluripotent stem cells. Stem Cell Reports 8, 1757–1769 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    Krencik, R., Weick, J. P., Liu, Y., Zhang, Z. J. & Zhang, S. C. Specification of transplantable astroglial subtypes from human pluripotent stem cells. Nat. Biotechnol. 29, 528–534 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    Stolt, C. C. et al. The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Genes Dev. 17, 1677–1689 (2003).

    CAS  Article  Google Scholar 

  13. 13.

    Deneen, B. et al. The transcription factor NFIA controls the onset of gliogenesis in the developing spinal cord. Neuron 52, 953–968 (2006).

    CAS  Article  Google Scholar 

  14. 14.

    Patterson, M. et al. let-7 miRNAs can act through notch to regulate human gliogenesis. Stem Cell Reports 3, 758–773 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    Naka, H., Nakamura, S., Shimazaki, T. & Okano, H. Requirement for COUP-TFI and II in the temporal specification of neural stem cells in CNS development. Nat. Neurosci. 11, 1014–1023 (2008).

    CAS  Article  Google Scholar 

  16. 16.

    Hirabayashi, Y. et al. Polycomb limits the neurogenic competence of neural precursor cells to promote astrogenic fate transition. Neuron 63, 600–613 (2009).

    CAS  Article  Google Scholar 

  17. 17.

    Koch, P., Opitz, T., Steinbeck, J. A., Ladewig, J. & Brustle, O. A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. Proc. Natl Acad. Sci. USA 106, 3225–3230 (2009).

    CAS  Article  Google Scholar 

  18. 18.

    Elkabetz, Y. et al. Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev. 22, 152–165 (2008).

    CAS  Article  Google Scholar 

  19. 19.

    Liu, Y. et al. CD44 expression identifies astrocyte-restricted precursor cells. Dev. Biol. 276, 31–46 (2004).

    CAS  Article  Google Scholar 

  20. 20.

    Chen, H. et al. Modeling ALS with iPSCs reveals that mutant SOD1 misregulates neurofilament balance in motor neurons. Cell Stem Cell 14, 796–809 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    Calder, E. L. et al. Retinoic acid-mediated regulation of GLI3 enables efficient motoneuron derivation from human ESCs in the absence of extrinsic SHH activation. J. Neurosci. 35, 11462–11481 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    Magistri, M. et al. A comparative transcriptomic analysis of astrocytes differentiation from human neural progenitor cells. Eur. J. Neurosci. 44, 2858–2870 (2016).

    Article  Google Scholar 

  23. 23.

    Lovatt, D. et al. The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex. J. Neurosci. 27, 12255–12266 (2007).

    CAS  Article  Google Scholar 

  24. 24.

    Cahoy, J. D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264–278 (2008).

    CAS  Article  Google Scholar 

  25. 25.

    Doyle, J. P. et al. Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135, 749–762 (2008).

    CAS  Article  Google Scholar 

  26. 26.

    Ullian, E. M., Sapperstein, S. K., Christopherson, K. S. & Barres, B. A. Control of synapse number by glia. Science 291, 657–661 (2001).

    CAS  Article  Google Scholar 

  27. 27.

    Sofroniew, M. V. Astrocyte barriers to neurotoxic inflammation. Nat. Rev. Neurosci. 16, 249–263 (2015).

    CAS  Article  Google Scholar 

  28. 28.

    Allen, N. J. & Eroglu, C. Cell biology of astrocyte-synapse interactions. Neuron 96, 697–708 (2017).

    CAS  Article  Google Scholar 

  29. 29.

    Betz, A. et al. Munc13-1 is a presynaptic phorbol ester receptor that enhances neurotransmitter release. Neuron 21, 123–136 (1998).

    CAS  Article  Google Scholar 

  30. 30.

    Sofroniew, M. V. & Vinters, H. V. Astrocytes: biology and pathology. Acta Neuropathol. 119, 7–35 (2010).

    Article  Google Scholar 

  31. 31.

    Liddelow, S. A. & Barres, B. A. Reactive astrocytes: production, function, and therapeutic potential. Immunity 46, 957–967 (2017).

    CAS  Article  Google Scholar 

  32. 32.

    Cornell-Bell, A. H., Finkbeiner, S. M., Cooper, M. S. & Smith, S. J. Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247, 470–473 (1990).

    CAS  Article  Google Scholar 

  33. 33.

    Oberheim, N. A. et al. Uniquely hominid features of adult human astrocytes. J. Neurosci. 29, 3276–3287 (2009).

    CAS  Article  Google Scholar 

  34. 34.

    Rajan, P. & McKay, R. D. Multiple routes to astrocytic differentiation in the CNS. J. Neurosci. 18, 3620–3629 (1998).

    CAS  Article  Google Scholar 

  35. 35.

    Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  Google Scholar 

  36. 36.

    Takahashi, T., Nowakowski, R. S. & Caviness, V. S. Jr. The cell cycle of the pseudostratified ventricular epithelium of the embryonic murine cerebral wall. J. Neurosci. 15, 6046–6057 (1995).

    CAS  Article  Google Scholar 

  37. 37.

    Sakaue-Sawano, A. et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132, 487–498 (2008).

    CAS  Article  Google Scholar 

  38. 38.

    Calegari, F. & Huttner, W. B. An inhibition of cyclin-dependent kinases that lengthens, but does not arrest, neuroepithelial cell cycle induces premature neurogenesis. J. Cell. Sci. 116, 4947–4955 (2003).

    CAS  Article  Google Scholar 

  39. 39.

    Vodermaier, H. C. APC/C and SCF: controlling each other and the cell cycle. Curr. Biol. 14, R787–R796 (2004).

    CAS  Article  Google Scholar 

  40. 40.

    Sigl, R. et al. Loss of the mammalian APC/C activator FZR1 shortens G1 and lengthens S phase but has little effect on exit from mitosis. J. Cell. Sci. 122, 4208–4217 (2009).

    CAS  Article  Google Scholar 

  41. 41.

    Garcia-Campmany, L. & Marti, E. The TGFbeta intracellular effector Smad3 regulates neuronal differentiation and cell fate specification in the developing spinal cord. Development 134, 65–75 (2007).

    CAS  Article  Google Scholar 

  42. 42.

    Zhang, Y., Alexander, P. B. & Wang, X. F. TGF-beta family signaling in the control of cell proliferation and survival. Cold Spring Harb Perspect Biol 9, a022145 (2017).

  43. 43.

    Zeltner, N. & Studer, L. Pluripotent stem cell-based disease modeling: current hurdles and future promise. Curr. Opin. Cell Biol. 37, 102–110 (2015).

    CAS  Article  Google Scholar 

  44. 44.

    Sances, S. et al. Modeling ALS with motor neurons derived from human induced pluripotent stem cells. Nat. Neurosci. 19, 542–553 (2016).

    CAS  Article  Google Scholar 

  45. 45.

    Williams, E. C. et al. Mutant astrocytes differentiated from Rett syndrome patients-specific iPSCs have adverse effects on wild-type neurons. Hum. Mol. Genet. 23, 2968–2980 (2014).

    CAS  Article  Google Scholar 

  46. 46.

    Le Roux, P. D. & Reh, T. A. Astroglia demonstrate regional differences in their ability to maintain primary dendritic outgrowth from mouse cortical neurons in vitro. J. Neurobiol. 27, 97–112 (1995).

    Article  Google Scholar 

  47. 47.

    Holmqvist, S. et al. Generation of human pluripotent stem cell reporter lines for the isolation of and reporting on astrocytes generated from ventral midbrain and ventral spinal cord neural progenitors. Stem Cell Res. 15, 203–220 (2015).

    CAS  Article  Google Scholar 

  48. 48.

    das Neves, L. et al. Disruption of the murine nuclear factor I-A gene (Nfia) results in perinatal lethality, hydrocephalus, and agenesis of the corpus callosum. Proc. Natl Acad. Sci. USA 96, 11946–11951 (1999).

    Article  Google Scholar 

  49. 49.

    Steele-Perkins, G. et al. The transcription factor gene Nfib is essential for both lung maturation and brain development. Mol. Cell. Biol. 25, 685–698 (2005).

    CAS  Article  Google Scholar 

  50. 50.

    Canals, I. et al. Rapid and efficient induction of functional astrocytes from human pluripotent stem cells. Nat. Methods 15, 693–696 (2018).

    CAS  Article  Google Scholar 

  51. 51.

    Pauklin, S. & Vallier, L. The cell-cycle state of stem cells determines cell fate propensity. Cell 155, 135–147 (2013).

    CAS  Article  Google Scholar 

  52. 52.

    Tchieu, J. et al. A modular platform for differentiation of human PSCs into all major ectodermal lineages. Cell Stem Cell. 21, 399–410 e397 (2017).

    CAS  Article  Google Scholar 

  53. 53.

    Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    CAS  Article  Google Scholar 

  54. 54.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  Google Scholar 

  55. 55.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS  Article  Google Scholar 

  56. 56.

    Ramirez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).

    CAS  Article  Google Scholar 

  57. 57.

    Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    CAS  Article  Google Scholar 

  58. 58.

    Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    CAS  Article  Google Scholar 

  59. 59.

    Steinbeck, J. A. et al. Functional connectivity under optogenetic control allows modeling of human neuromuscular disease. Cell Stem Cell 18, 134–143 (2016).

    CAS  Article  Google Scholar 

  60. 60.

    Chiricozzi, E. et al. Group IIA secretory phospholipase A2 (GIIA) mediates apoptotic death during NMDA receptor activation in rat primary cortical neurons. J. Neurochem. 112, 1574–1583 (2010).

    CAS  Article  Google Scholar 

  61. 61.

    Cheng, P. Y. et al. Interplay between SIN3A and STAT3 mediates chromatin conformational changes and GFAP expression during cellular differentiation. PLoS ONE 6, e22018 (2011).

    CAS  Article  Google Scholar 

  62. 62.

    Maroof, A. M. et al. Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell 12, 559–572 (2013).

    CAS  Article  Google Scholar 

  63. 63.

    Ying, S. W. & Goldstein, P. A. Propofol suppresses synaptic responsiveness of somatosensory relay neurons to excitatory input by potentiating GABA(A) receptor chloride channels. Mol. Pain 1, 2 (2005).

    Article  Google Scholar 

Download references


We are grateful to the members the Studer laboratory for helpful discussions and support for this project, and to G. Cederquist, M. Tomishima, S. Irion and V. Tabar for their critical comments on the manuscript. We would also like to give special thanks to A. Koff (MSKCC) for his helpful comments, experimental discussions regarding the cell cycle and comments on the manuscript. Additionally, we would like to thank A. Viale at Integrated Genomics Operation Core (MSKCC) for the RNA-sequencing studies, M. Witkin at the Epigenetics Core (MSKCC) for the ATAC sequencing, S. Fujisawa, E. Feng and V. Boyko at the Molecular Cytology Core (MSKCC) for help in calcium imaging studies and quantification of synaptic proteins, R. Garripa and H. Liu at the RNAi Core (MSKCC) for help with short hairpin RNA design and the Flow Cytometry Core (MSKCC) for the cell-sorting applications. J.T. was supported by the Tri-I Starr Stem Cell Scholars postdoctoral training fellowship. S.R.G was supported by the Ruth L. Kirschstein Individual Predoctoral NRSA for MD/PhD Fellowship (No. 1F30MH115616-01) and by a Medical Scientist Training Program grant from the National Institute of General Medical Sciences of the National Institutes of Health (No. T32GM007739) to the Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program. E.M.G. was supported by a grant from the Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (No. 323630-164217). The work was supported by grants to L.S. from the National Institutes of Health (No. R21NS084334, No. R01AG056298), by core grant No. P30CA008748 and by a grant from Project ALS.

Author information




J.T. contributed to the conception, study design, data analysis and interpretation, writing of the manuscript, bioinformatics, development and execution of directed differentiation strategies from hPSCs, generation of LTNSCs, cell cycle analysis and calcium imaging. E.L.C. contributed to maintenance of hPSCs and directed differentiation of spinal cord progenitors. S.R.G. contributed to cell cycle analysis and astrocyte activation assays. E.M.G.contributed to transplantation studies and data analysis. K.A.A. and P.A.G. contributed to electrophysiology and assessment of neuronal maturation. J.A.S. contributed to generation of LTNSCs and calcium imaging. L.S. contributed to the conception, study design, data analysis and interpretation and writing of the manuscript.

Corresponding authors

Correspondence to Jason Tchieu or Lorenz Studer.

Ethics declarations

Competing interests

The Memorial Sloan-Kettering Cancer Center has filed a patent application (WO2018175574A1) on the methods described in the manuscript. L.S. is the scientific cofounder of Bluerock Therapeutics.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information


FUCCI-O reporter on LTNSCs without doxycycline induction


FUCCI-O reporter on LTNSCs with continuous doxycycline treatment

Supplementary Text and Figures

Supplementary Figures 1–25

Reporting Summary

Supplementary Table 1

Gene expression dataset of NFIA-induced astrocytes log transformed counts per million (CPM)

Supplementary Table 2

Gene expression dataset of the NFIA-induction time course. Fold changes compared to day 0 (neurogenic NSCs)

Supplementary Table 3

List of antibodies used in this study

Supplementary Video 1

FUCCI-O reporter on LTNSCs without doxycycline induction

Supplementary Video 2

FUCCI-O reporter on LTNSCs with continuous doxycycline treatment

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tchieu, J., Calder, E.L., Guttikonda, S.R. et al. NFIA is a gliogenic switch enabling rapid derivation of functional human astrocytes from pluripotent stem cells. Nat Biotechnol 37, 267–275 (2019).

Download citation

Further reading