Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evolutionary novelties underlie sound production in baleen whales

Abstract

Baleen whales (mysticetes) use vocalizations to mediate their complex social and reproductive behaviours in vast, opaque marine environments1. Adapting to an obligate aquatic lifestyle demanded fundamental physiological changes to efficiently produce sound, including laryngeal specializations2,3,4. Whereas toothed whales (odontocetes) evolved a nasal vocal organ5, mysticetes have been thought to use the larynx for sound production1,6,7,8. However, there has been no direct demonstration that the mysticete larynx can phonate, or if it does, how it produces the great diversity of mysticete sounds9. Here we combine experiments on the excised larynx of three mysticete species with detailed anatomy and computational models to show that mysticetes evolved unique laryngeal structures for sound production. These structures allow some of the largest animals that ever lived to efficiently produce frequency-modulated, low-frequency calls. Furthermore, we show that this phonation mechanism is likely to be ancestral to all mysticetes and shares its fundamental physical basis with most terrestrial mammals, including humans10, birds11, and their closest relatives, odontocetes5. However, these laryngeal structures set insurmountable physiological limits to the frequency range and depth of their vocalizations, preventing them from escaping anthropogenic vessel noise12,13 and communicating at great depths14, thereby greatly reducing their active communication range.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Adaptations in mysticete laryngeal anatomy.
Fig. 2: A previously undescribed phonation mechanism in mysticetes.
Fig. 3: Computational modelling shows that mysticetes use MEAD principles and unique muscles to control frequency.
Fig. 4: Bilateral TAF phonation in humpback whales.
Fig. 5: The phonation mechanism in two mysticete clades extends the fundamental frequency range of harmonic sounds.

Similar content being viewed by others

Data availability

Source data for figures are available at Zenodo (https://doi.org/10.5281/zenodo.10390075). The B. musculus recording is from Discovery of Sounds in the Sea, https://dosits.org/galleries/audio-gallery/marine-mammals/baleen-whales/blue-whale/. The B. mysticus recording is from the Watkins Marine Mammal Sound Database, Woods Hole Oceanographic Institution and the New Bedford Whaling Museum (https://whoicf2.whoi.edu/science/B/whalesounds/index.cfm). Source data are provided with this paper.

Code availability

Code is available at Zenodo (https://doi.org/10.5281/zenodo.10390075).

References

  1. Clark, C. W. & Garland, E. C. (eds) Ethology and Behavioral Ecology of Mysticetes (Springer, 2022).

  2. Reidenberg, J. S. & Laitman, J. T. Discovery of a low frequency sound source in Mysticeti (baleen whales): anatomical establishment of a vocal fold homolog. Anat. Rec. 290, 745–759 (2007).

    Article  Google Scholar 

  3. Schoenfuss, H. L. et al. The anatomy of the larynx of the bowhead whale, Balaena mysticetus, and its sound-producing functions. Anat. Rec. 297, 1316–1330 (2014).

    Article  Google Scholar 

  4. Damien, J. et al. Anatomy and functional morphology of the mysticete rorqual whale larynx: phonation positions of the U-fold. Anat. Rec. 302, 703–717 (2019).

    Article  Google Scholar 

  5. Madsen, P. T., Siebert, U. & Elemans, C. P. H. Toothed whales use distinct vocal registers for echolocation and communication. Science 379, 928–933 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Reidenberg, J. S. in Ethology and Behavioral Ecology of Mysticetes (eds Clark, C. W. & Garland, E. C.) Ch. 3, 45–69 (Springer, 2022).

  7. Adam, O. et al. New acoustic model for humpback whale sound production. Appl. Acoust. 74, 1182–1190 (2013).

    Article  Google Scholar 

  8. Cazau, D., Adam, O., Aubin, T., Laitman, J. T. & Reidenberg, J. S. A study of vocal nonlinearities in humpback whale songs: from production mechanisms to acoustic analysis. Sci. Rep. 6, 31660 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Erbe, C. et al. Review of underwater and in-air sounds emitted by Australian and Antarctic marine mammals. Acoust. Aust. 45, 179–241 (2017).

    Article  Google Scholar 

  10. Herbst, C. T., Elemans, C. P. H., Tokuda, I. T., Chatziioannou, V. & Švec, J. G. Dynamic system coupling in voice production. J. Voice https://doi.org/10.1016/j.jvoice.2022.10.004 (2023).

  11. Elemans, C. P. H. et al. Universal mechanisms of sound production and control in birds and mammals. Nat. Commun. 6, 8978 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Findlay, C. R., Rojano-Doñate, L., Tougaard, J., Johnson, M. P. & Madsen, M. P. Small reductions in cargo vessel speed substantially reduce noise impacts to marine mammals. Sci. Adv. 9, eadf2987 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Erbe, C., Reichmuth, C., Cunningham, K., Lucke, K. & Dooling, R. Communication masking in marine mammals: a review and research strategy. Mar. Pollut. Bull. 103, 15–38 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Payne, R. & Webb, D. Orientation by means of long range acoustic signaling in baleen whales. Ann. NY Acad. Sci. 188, 110–141 (1971).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Huggenberger, S., Rauschmann, M. A. & Oelschlager, H. H. Functional morphology of the hyolaryngeal complex of the harbor porpoise (Phocoena phocoena): implications for its role in sound production and respiration. Anat. Rec. 291, 1262–1270 (2008).

    Article  Google Scholar 

  16. Gil, K. N., Lillie, M. A., Vogl, A. W. & Shadwick, R. E. Rorqual whale nasal plugs: protecting the respiratory tract against water entry and barotrauma. J. Exp. Biol. 223, jeb219691 (2020).

    Article  PubMed  Google Scholar 

  17. Gil, K. N., Vogl, A. W. & Shadwick, R. E. Anatomical mechanism for protecting the airway in the largest animals on Earth. Curr. Biol. 32, 898–903 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, Z. Mechanics of human voice production and control. J. Acoust. Soc. Am. 140, 2614–2635 (2016).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, Z. Cause-effect relationship between vocal fold physiology and voice production in a three-dimensional phonation model. J. Acoust. Soc. Am. 139, 1493–1507 (2016).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  20. Jiang, W. et al. High-fidelity continuum modeling predicts avian voiced sound production. Proc. Natl Acad. Sci. USA 117, 4718–4723 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chhetri, D. K., Zhang, Z. & Neubauer, J. Measurement of Young’s modulus of vocal folds by indentation. J. Voice 25, 1–7 (2011).

    Article  PubMed  Google Scholar 

  22. Van den berg, J. Myoelastic-aerodynamic theory of voice production. J. Speech Hear. Res. 1, 227–244 (1958).

    Article  CAS  PubMed  Google Scholar 

  23. Baumgartner, M. F. et al. Low frequency vocalizations attributed to sei whales (Balaenoptera borealis). J. Acoust. Soc. Am. 124, 1339–1349 (2008).

    Article  ADS  PubMed  Google Scholar 

  24. Calderan, S. et al. Low-frequency vocalizations of sei whales (Balaenoptera borealis) in the Southern Ocean. J. Acoust. Soc. Am. 136, EL418–EL423 (2014).

    Article  PubMed  Google Scholar 

  25. Newhall, A. E., Lin, Y.-T., Lynch, J. F., Baumgartner, M. F. & Gawarkiewicz, G. G. Long distance passive localization of vocalizing sei whales using an acoustic normal mode approach. J. Acoust. Soc. Am. 131, 1814–1825 (2012).

    Article  ADS  PubMed  Google Scholar 

  26. McDonald, M. A. et al. Sei whale sounds recorded in the Antarctic. J. Acoust. Soc. Am. 118, 3941–3945 (2005).

    Article  ADS  PubMed  Google Scholar 

  27. Romagosa, M., Boisseau, O., Cucknell, A.-C., Moscrop, A. & McLanaghan, R. Source level estimates for sei whale (Balaenoptera borealis) vocalizations off the Azores. J. Acoust. Soc. Am. 138, 2367–2372 (2015).

    Article  ADS  PubMed  Google Scholar 

  28. Cazau, D., Adam, O., Laitman, J. T. & Reidenberg, J. S. Understanding the intentional acoustic behavior of humpback whales: a production-based approach. J. Acoust. Soc. Am. 134, 2268–2273 (2013).

    Article  ADS  PubMed  Google Scholar 

  29. Fitch, W. T., Neubauer, J. & Herzel, H. Calls out of chaos: the adaptive significance of nonlinear phenomena in mammalian vocal production. Anim. Behav. 63, 407–418 (2002).

    Article  Google Scholar 

  30. Suthers, R. A., Fitch, W. T., Fay, R. R. & Popper, A. N. (eds) Vertebrate Sound Production and Acoustic Communication (Springer, 2016).

  31. Reeb, D. & Best, P. B. Anatomy of the laryngeal apparatus of the pygmy right whale, Caperea marginata (Gray 1846). J. Morphol. 242, 67–81 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Titze, I., Riede, T. & Mau, T. Predicting achievable fundamental frequency ranges in vocalization across species. PLoS Comput. Biol. 12, e1004907 (2016).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  33. Stimpert, A. K., Peavey, L. E., Friedlaender, A. S. & Nowacek, D. P. Humpback whale song and foraging behavior on an Antarctic feeding ground. PLoS ONE 7, e51214 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dunlop, R. A., Noad, M. J., Cato, D. H. & Stokes, D. The social vocalization repertoire of east Australian migrating humpback whales (Megaptera novaeangliae). J. Acoust. Soc. Am. 122, 2893–2905 (2007).

    Article  ADS  PubMed  Google Scholar 

  35. Mercado, E. III, Schneider, J. N., Pack, A. A. & Herman, L. M. Sound production by singing humpback whales. J. Acoust. Soc. Am. 127, 2678–2691 (2010).

    Article  ADS  PubMed  Google Scholar 

  36. Tervo, O. M. et al. High source levels and small active space of high-pitched song in bowhead whales (Balaena mysticetus). PLoS ONE 7, e52072 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Širović, A., Hildebrand, J. A. & Wiggins, S. M. Blue and fin whale call source levels and propagation range in the Southern Ocean. J. Acoust. Soc. Am. 122, 1208–1215 (2007).

    Article  ADS  PubMed  Google Scholar 

  38. Orlikoff, R. F., Baken, R. J. & Kraus, D. H. Acoustic and physiologic characteristics of inspiratory phonation. J. Acoust. Soc. Am. 102, 1838–1845 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Anikin, A. & Reby, D. Ingressive phonation conveys arousal in human nonverbal vocalizations. Bioacoustics 31, 680–695 (2022).

    Article  Google Scholar 

  40. McGowen, M. R. et al. Phylogenomic resolution of the cetacean tree of life using target sequence capture. Syst. Biol. 69, 479–501 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Garcia, M. & Herbst, C. T. Excised larynx experimentation: history, current developments, and prospects for bioacoustic research. Anthropol. Sci. 126, 9–17 (2018).

    Article  Google Scholar 

  42. Pawlak, J. J. & Keller, D. S. Measurement of the local compressive characteristics of polymeric film and web structures using micro-indentation. Polym. Test. 22, 515–528 (2003).

    Article  CAS  Google Scholar 

  43. Kumar, S., Liu, G., Schloerb, D. W. & Srinivasan, M. A. Viscoelastic characterization of the primate finger pad in vivo by microstep indentation and three-dimensional finite element models for tactile sensation studies. J. Biomech. Eng. 137, 061002 (2015).

    Article  PubMed  Google Scholar 

  44. Kelleher, J. E., Siegmund, T., Du, M., Naseri, E. & Chan, R. W. Empirical measurements of biomechanical anisotropy of the human vocal fold lamina propria. Biomech. Model. Mechanobiol. 12, 555–567 (2013).

    Article  PubMed  Google Scholar 

  45. Chan, R. W. & Titze, I. R. Effect of postmortem changes and freezing on the viscoelastic properties of vocal fold tissues. Ann. Biomed. Eng. 31, 482–491 (2003).

    Article  PubMed  Google Scholar 

  46. Sims, A. M. et al. Elastic and viscoelastic properties of porcine subdermal fat using MRI and inverse FEA. Biomech. Model. Mechanobiol. 9, 703–711 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Dhondt, G. The Finite Element Method for Three-Dimensional Thermomechanical Applications (Wiley, 2004).

  48. Hunter, E. J. & Titze, I. R. Refinements in modeling the passive properties of laryngeal soft tissue. J. Appl. Physiol. 103, 206–219 (2007).

    Article  PubMed  Google Scholar 

  49. Arkowitz, R. & Rommel, S. Force and bending moment of the caudal muscles in the shortfin pilot whale. Mar. Mamm. Sci. 1, 203–209 (1985).

    Article  Google Scholar 

  50. Peri, E., Falkingham, P. L., Collareta, A. & Bianucci, G. Biting in the Miocene seas: estimation of the bite force of the macroraptorial sperm whale Zygophyseter varolai using finite element analysis. Hist. Biol. 34, 1916–1927 (2022).

    Article  Google Scholar 

  51. Smith, S. L. & Hunter, E. J. A viscoelastic laryngeal muscle model with active components. J. Acoust. Soc. Am. 135, 2041–2051 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  52. Aroyan, J. L. et al. in Hearing by Whales and Dolphins (eds Au, W. W. L. et al.) Ch. 10, 409–469 (Springer, 2000).

  53. Geng, B., Pham, N., Xue, Q. & Zheng, X. A three-dimensional vocal fold posturing model based on muscle mechanics and magnetic resonance imaging of a canine larynx. J. Acoust. Soc. Am. 147, 2597–2608 (2020).

    Article  ADS  PubMed  Google Scholar 

  54. Zollinger, S. A., Podos, J., Nemeth, E., Goller, F. & Brumm, H. On the relationship between, and measurement of, amplitude and frequency in birdsong. Anim. Behav. 84, e1–e9 (2012).

    Article  Google Scholar 

  55. Dawbin, W. H. & Cato, D. H. Sounds of a pygmy right whale (Caperea marginata). Mar. Mamm. Sci. 8, 213–219 (1992).

    Article  Google Scholar 

  56. Fahlman, A. et al. Comparative respiratory physiology in cetaceans. Front. Physiol. 11, 142 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Leith, D. E. Mammalian tracheal dimensions: scaling and physiology. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 55, 196–200 (1983).

    CAS  PubMed  Google Scholar 

  58. Risch, D. et al. Mysterious bio-duck sound attributed to the Antarctic minke whale (Balaenoptera bonaerensis). Biol. Lett. 10, 20140175 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Gedamke, J., Costa, D. P. & Dunstan, A. Localization and visual verification of a complex minke whale vocalization. J. Acoust. Soc. Am. 109, 3038–3047 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Hosokawa, H. On the cetacean larynx, with special remarks on the laryngeal sack of the sei whale and the aryteno-epiglottideal tube of the sperm whale. Sci. Rep. Whales Res. Inst. 3, 23–62 (1950).

    Google Scholar 

  61. Viloria-Gómora, L., Romero-Vivas, E. & Urbán, J. R. Calls of Bryde’s whale (Balaenoptera edeni) recorded in the Gulf of California. J. Acoust. Soc. Am. 138, 2722–2725 (2015).

    Article  ADS  PubMed  Google Scholar 

  62. Širović, A., Bassett, H. R., Johnson, S. C., Wiggins, S. M. & Hildebrand, J. A. Bryde’s whale calls recorded in the Gulf of Mexico. Mar. Mamm. Sci. 30, 399–409 (2014).

    Article  Google Scholar 

  63. Oleson, E. M., Barlow, J., Gordon, J., Rankin, S. & Hildebrand, J. A. Low frequency calls of Bryde’s whales. Mar. Mamm. Sci. 19, 407–419 (2003).

    Article  Google Scholar 

  64. Wang, Z.-T. et al. Vocalization of Bryde’s whales (Balaenoptera edeni) in the Beibu Gulf, China. Mar. Mamm.Sci. 38, 1118–1139 (2022).

    Article  MathSciNet  Google Scholar 

  65. Edds, P. L., Odell, D. K. & Tershy, B. R. Vocalizations of a captive juvenile and free‐ranging adult‐calf pairs of Bryde’s whales, Balaenoptera edeni. Mar. Mamm. Sci. 9, 269–284 (1993).

    Article  Google Scholar 

  66. Calambokidis, J. et al. Insights into the underwater diving, feeding, and calling behavior of blue whales from a suction-cup-attached video-imaging tag (CRITTERCAM). Mar. Technol. Soc. J. 41, 19–29 (2007).

    Article  Google Scholar 

  67. Mellinger, D. K. & Clark, C. W. Blue whale (Balaenoptera musculus) sounds from the North Atlantic. J. Acoust. Soc. Am. 114, 1108–1119 (2003).

    Article  ADS  PubMed  Google Scholar 

  68. Lewis, L. A. et al. Context-dependent variability in blue whale acoustic behaviour. R. Soc. Open Sci. 5, 180241 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Oleson, E. M. et al. Behavioral context of call production by eastern North Pacific blue whales. Mar. Ecol. Prog. Ser. 330, 269–284 (2007).

    Article  ADS  Google Scholar 

  70. Watkins, W. A. Activities and underwater sounds of fin whales. Sci. Rep. Whales Res. Inst. 33, 83–117 (1981).

    Google Scholar 

  71. Stimpert, A. K. et al. Sound production and associated behavior of tagged fin whales (Balaenoptera physalus) in the Southern California Bight. Anim. Biotelemetry 3, 23 (2015).

    Article  Google Scholar 

  72. Weirathmueller, M. J., Wilcock, W. S. D. & Soule, D. C. Source levels of fin whale 20 Hz pulses measured in the Northeast Pacific Ocean. J. Acoust. Soc. Am. 133, 741–749 (2013).

    Article  ADS  PubMed  Google Scholar 

  73. Mercado, E. III & Perazio, C. E. All units are equal in humpback whale songs, but some are more equal than others. Anim. Cogn. 25, 149–177 (2022).

    Article  PubMed  Google Scholar 

  74. Videsen, S. K. A., Bejder, L., Johnson, M., Madsen, P. T. & Goldbogen, J. High suckling rates and acoustic crypsis of humpback whale neonates maximise potential for mother–calf energy transfer. Funct. Ecol. 31, 1561–1573 (2017).

    Article  Google Scholar 

  75. Burnham, R., Duffus, D. & Mouy, X. Gray whale (Eschrictius robustus) call types recorded during migration off the west coast of Vancouver Island. Front. Mar. Sci. 5, 00329 (2018).

    Article  Google Scholar 

  76. López-Urbán, A., Thode, A., Durán, C. B., Urbán R, J. & Swartz, S. Two new grey whale call types detected on bioacoustic tags. J. Mar. Biol. Assoc. UK 98, 1169–1175 (2018).

    Article  Google Scholar 

  77. Rankin, S. & Barlow, J. Source of the North Pacific “boing” sound attributed to minke whales. J. Acoust. Soc. Am. 118, 3346–3351 (2005).

    Article  ADS  PubMed  Google Scholar 

  78. Schevill, W. E. & Watkins, W. A. Intense low-frequency sounds from an Antarctic minke whale, Balaenoptera acutorostrata. Breviora 388, 1–8 (1972).

    Google Scholar 

  79. Edds-Walton, P. L. Vocalizations of minke whales Balaenoptera acutorostrata in the St. Lawrence estuary. Bioacoustics 11, 31–50 (2000).

    Article  Google Scholar 

  80. Dominello, T. & Širović, A. Seasonality of Antarctic minke whale (Balaenoptera bonaerensis) calls off the western Antarctic Peninsula. Mar. Mamm. Sci. 32, 826–838 (2016).

    Article  Google Scholar 

  81. Širović, A. et al. North Pacific right whales (Eubalaena japonica) recorded in the northeastern Pacific Ocean in 2013. Mar. Mamm. Sci. 31, 800–807 (2015).

    Article  Google Scholar 

  82. Mellinger, D. K., Stafford, K. M., Moore, S. E., Munger, L. & Fox, C. G. Detection of North Pacific right whale (Eubalaena japonica) calls in the Gulf of Alaska. Mar. Mamm. Sci. 20, 872–879 (2004).

    Article  Google Scholar 

  83. Crance, J. L., Berchok, C. L., Wright, D. L., Brewer, A. M. & Woodrich, D. F. Song production by the North Pacific right whale, Eubalaena japonica. J. Acoust. Soc. Am. 145, 3467–3479 (2019).

    Article  ADS  PubMed  Google Scholar 

  84. Trygonis, V., Gerstein, E., Moir, J. & McCulloch, S. Vocalization characteristics of North Atlantic right whale surface active groups in the calving habitat, southeastern United States. J. Acoust. Soc. Am. 134, 4518–4531 (2013).

    Article  ADS  PubMed  Google Scholar 

  85. Dombroski, J. R. G., Parks, S. E., Groch, K. R., Flores, P. A. C. & Sousa‐lima, R. S. Upcall production by southern right whale (Eubalaena australis) mother‐calf pairs may be independent of diel period in a nursery area. Mar. Mamm. Sci. 33, 669–677 (2017).

    Article  Google Scholar 

  86. Dombroski, J. R., Parks, S. E., Groch, K. R., Flores, P. A. & Sousa-Lima, R. S. Vocalizations produced by southern right whale (Eubalaena australis) mother-calf pairs in a calving ground off Brazil. J. Acoust. Soc. Am. 140, 1850–1857 (2016).

    Article  ADS  PubMed  Google Scholar 

  87. Clark, C. W. The acoustic repertoire of the southern right whale, a quantitative analysis. Anim. Behav. 30, 1060–1071 (1982).

    Article  Google Scholar 

  88. Erbs, F., van der Schaar, M., Weissenberger, J., Zaugg, S. & André, M. Contribution to unravel variability in bowhead whale songs and better understand its ecological significance. Sci. Rep. 11, 168 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Thode, A. M. et al. Source level and calling depth distributions of migrating bowhead whale calls in the shallow Beaufort Sea. J. Acoust. Soc. Am. 140, 4288–4297 (2016).

    Article  ADS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank staff at the Natural History Museum of Denmark, the Fisheries and Maritime Museum and the Danish Nature Agency for their aid in stranding response and dissection of the sei and humpback whales; C. Bie Thøstesen and M. Tange Olsen for help in organizing the dissections; G. Hantke and A. Kitchener for providing the minke whale larynx; C. Herbst and D. Mann for assistance with experiments in Vienna; and L. Jakobsen, P. T. Madsen and D. Wisniewska for comments on the manuscript. Funding was from Carlsberg Foundation CF14-1096 and NovoNordisk grant NFF20OC0063964 to C.P.H.E. and an Austrian Science Fund (FWF) grant W1262-B29 to W.T.F.

Author information

Authors and Affiliations

Authors

Contributions

C.P.H.E., M.H.J. and M.W. carried out experiments on excised larynx in Odense, and C.P.H.E., H.P. and W.T.F. in Vienna. C.P.H.E., B.R.M. and J.N. scanned the preparations and M.H.J. and H.P. annotated the scans. C.P.H.E. designed and built the experimental set-ups in Odense, analysed the experimental data and made figures. W.J., X.Z., C.P.H.E. and Q.X. developed the FSI model. W.J. analysed simulation data and made figures. C.P.H.E. carried out and analysed the material tests. C.P.H.E. and W.T.F. wrote the first drafts of the manuscript, and all authors contributed to the final draft.

Corresponding authors

Correspondence to Coen P. H. Elemans or W. Tecumseh Fitch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Nicholas Pyenson, Joy Reidenberg and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Sei whale larynx gross anatomy.

a, 3D render of laryngeal cartilages based on CT scan as in Fig. 1d. b, Ventral view of larynx defrosted after in vitro phonation experiment. Laryngeal sac has been cut medially and the blue tracheal connector is visible. c, Dorsal view of larynx with cricoid cartilage cut and arytenoids bend laterally. d, View on Cricoid Cushion (CC) and Transverse arytenoid folds (TAF) in rest (left) and adducted against each other as during phonation (right). e, Sagittal sections through the CC at various adjacent locations showing the tensor pulvini muscle (deep red) and CC fat (yellow to greenish). Section 7 and 8 have already been frozen in liquid nitrogen. f, 3D render and g, dissection view of medial section through larynx. Indicated are CC sections and TAF sections through the arytenoid cartilage (below).

Extended Data Fig. 2 Humpback whales phonate by CC against TAF vibration.

a, Still of endoscopic view. b, Overview and c, detail of small section of the in vitro sound production data showing that the CC and TAFs vibrate and that sound and acceleration excitation occurs on gap opening.

Extended Data Fig. 3 Tissue motion during phonation on CC and TAF mucosa.

Motion during phonation at Probe 1 and 2 location (Fig. 3f) is larger on CC compared to TAF mucosa (1.84 ± 0.08 vs. 0.32 ± 0.01 mm in Probe 1 location, n = 11 cycles; two-tailed, paired t-test, p = 6.2e−10).

Extended Data Fig. 4 Ingressive flow does not lead to stable self-sustained oscillations of CC against TAF.

a, Laryngeal flow waveform and b, probe readout showing a damped vibration, instead of self-sustained oscillations. See also Supplementary Video 6.

Extended Data Fig. 5 Stimulation of vocalis muscle does not have a notable effect on vocalization frequency.

Three different stimulation levels (α) of the vocalis muscle: a, α = 0; b, α = 0.1; c, α = 0.2. Left, the muscle stress in the fibre direction; Right: Laryngeal flow as a function of time. The fundamental frequency (fo) was obtained by a fast fourier transform of the data from 50 ms to 400 ms.

Extended Data Fig. 6 Strain-stress relationship of the passive component of the modelled muscle tissue.

Left, transverse direction. Right, along the fibre direction.

Extended Data Table 1 Statistical tests
Extended Data Table 2 Anatomical and bioacoustic data of mysticete species
Extended Data Table 3 Material properties in the Sei whale larynx FSI model

Supplementary information

Supplementary Information

Reporting Summary

Supplementary Audio 1

Aerial sound signal of CC against TAF phonation in sei whale.

Supplementary Audio 2

Acceleration signal of CC against TAF phonation in sei whale.

Supplementary Audio 3

Electroglottograph signal of CC against TAF phonation in sei whale.

Supplementary Audio 4

Aerial sound signal of CC against TAF phonation in minke whale.

Supplementary Audio 5

Electroglottograph signal of CC against TAF phonation in minke whale.

Supplementary Audio 6

Aerial sound signal of CC against TAF phonation in humpback whale.

Supplementary Audio 7

Acceleration signal of CC against TAF phonation in humpback whale.

Supplementary Audio 8

Electroglottograph signal of CC against TAF phonation in humpback whale.

Supplementary Audio 9

Aerial sound signal of bilateral TAF phonation in humpback whale.

Supplementary Audio 10

Acceleration signal of bilateral TAF phonation in humpback whale.

Supplementary Video 1

Supplementary Video 2

Supplementary Video 3

Supplementary Video 4

Supplementary Video 5

Supplementary Video 6

Supplementary Video 7

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elemans, C.P.H., Jiang, W., Jensen, M.H. et al. Evolutionary novelties underlie sound production in baleen whales. Nature 627, 123–129 (2024). https://doi.org/10.1038/s41586-024-07080-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07080-1

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing