Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Aspartate all-in-one doping strategy enables efficient all-perovskite tandems

Abstract

All-perovskite tandem solar cells hold great promise in surpassing the Shockley–Queisser limit for single-junction solar cells1,2,3. However, the practical use of these cells is currently hampered by the subpar performance and stability issues associated with mixed tin–lead (Sn–Pb) narrow-bandgap perovskite subcells in all-perovskite tandems4,5,6,7. In this study, we focus on the narrow-bandgap subcells and develop an all-in-one doping strategy for them. We introduce aspartate hydrochloride (AspCl) into both the bottom poly(3,4-ethylene dioxythiophene)–poly(styrene sulfonate) and bulk perovskite layers, followed by another AspCl posttreatment. We show that a single AspCl additive can effectively passivate defects, reduce Sn4+ impurities and shift the Fermi energy level. Additionally, the strong molecular bonding of AspCl–Sn/Pb iodide and AspCl–AspCl can strengthen the structure and thereby improve the stability of Sn–Pb perovskites. Ultimately, the implementation of AspCl doping in Sn–Pb perovskite solar cells yielded power conversion efficiencies of 22.46% for single-junction cells and 27.84% (27.62% stabilized and 27.34% certified) for tandems with 95% retention after being stored in an N2-filled glovebox for 2,000 h. These results suggest that all-in-one AspCl doping is a favourable strategy for enhancing the efficiency and stability of single-junction Sn–Pb perovskite solar cells and their tandems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Preparation and mechanism of AspCl in NBG Sn–Pb perovskites.
Fig. 2: Characterization of NBG Sn–Pb perovskite films.
Fig. 3: Performance of single-junction NBG Sn–Pb PSCs.
Fig. 4: Performance of 2T all-perovskite tandem solar cells.

Similar content being viewed by others

Data availability

All data are available in the main text or supplementary materials. The data and code that support the findings of this study are available from the corresponding authors on request.

References

  1. He, R. et al. Wide-bandgap organic–inorganic hybrid and all-inorganic perovskite solar cells and their application in all-perovskite tandem solar cells. Energy Environ. Sci. 14, 5723–5759 (2021).

    Article  CAS  Google Scholar 

  2. He, R. et al. All-perovskite tandem 1 cm2 cells with improved interface quality. Nature 618, 80–86 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Zhang, W. et al. Revealing key factors of efficient narrow-bandgap mixed lead-tin perovskite solar cells via numerical simulations and experiments. Nano Energy 96, 107078 (2022).

  4. Li, C. et al. Low-bandgap mixed tin–lead iodide perovskites with reduced methylammonium for simultaneous enhancement of solar cell efficiency and stability. Nat. Energy 5, 768–776 (2020).

    Article  ADS  CAS  Google Scholar 

  5. Tong, J. et al. Carrier control in Sn–Pb perovskites via 2D cation engineering for all-perovskite tandem solar cells with improved efficiency and stability. Nat. Energy 7, 642–651 (2022).

    Article  ADS  CAS  Google Scholar 

  6. Ke, W., Stoumpos, C. C. & Kanatzidis, M. G. “Unleaded” perovskites: status quo and future prospects of tin-based perovskite solar cells. Adv. Mater. 31, 1803230 (2019).

    Article  CAS  Google Scholar 

  7. Lin, R. et al. All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction. Nature 620, 994–1000 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Yoo, J. J. et al. Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Liao, W. et al. Fabrication of efficient low-bandgap perovskite solar cells by combining formamidinium tin iodide with methylammonium lead iodide. J. Am. Chem. Soc. 138, 12360–12363 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Huang, L. et al. Efficient narrow‐bandgap mixed tin‐lead perovskite solar cells via natural tin oxide doping. Adv. Mater. 35, 2301125 (2023).

    Article  CAS  Google Scholar 

  11. Jiang, Q. et al. Compositional texture engineering for highly stable wide-bandgap perovskite solar cells. Science 378, 1295–1300 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Tong, J. et al. Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science 364, 475–479 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Lin, R. et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature 603, 73–78 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Xiao, K. et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat. Energy 5, 870–880 (2020).

    Article  ADS  Google Scholar 

  15. Wang, Z. et al. Suppressed phase segregation for triple-junction perovskite solar cells. Nature 618, 74–79 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Chen, H. et al. Regulating surface potential maximizes voltage in all-perovskite tandems. Nature 613, 676–681 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Saidaminov, M. I. et al. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy 3, 648–654 (2018).

    Article  ADS  CAS  Google Scholar 

  18. Chen, B., Rudd, P. N., Yang, S., Yuan, Y. & Huang, J. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48, 3842–3867 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Liu, C. et al. Highly efficient quasi‐2D green perovskite light‐emitting diodes with bifunctional amino acid. Adv. Opt. Mater. 10, 2200276 (2022).

    Article  CAS  Google Scholar 

  20. Xu, J. et al. Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems. Science 367, 1097–1104 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Li, G. et al. Ionic liquid stabilizing high‐efficiency tin halide perovskite solar cells. Adv. Energy Mater. 11, 2101539 (2021).

    Article  CAS  Google Scholar 

  22. Zheng, X. et al. Quantum dots supply bulk- and surface-passivation agents for efficient and stable perovskite solar cells. Joule 3, 1963–1976 (2019).

    Article  CAS  Google Scholar 

  23. Liu, F. et al. Is Excess PbI2 beneficial for perovskite solar cell performance? Adv. Energy Mater. 6, 1502206 (2016).

    Article  ADS  Google Scholar 

  24. Jiang, Q. et al. Planar-structure perovskite solar cells with efficiency beyond 21%. Adv. Mater. 29, 1703852 (2017).

    Article  Google Scholar 

  25. Ke, W. et al. Employing lead thiocyanate additive to reduce the hysteresis and boost the fill factor of planar perovskite solar cells. Adv. Mater. 28, 5214–5221 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Tumen‐Ulzii, G. et al. Detrimental effect of unreacted PbI2 on the long‐term stability of perovskite solar cells. Adv. Mater. 32, 1905035 (2020).

    Article  Google Scholar 

  27. Hu, S. et al. Optimized carrier extraction at interfaces for 23.6% efficient tin–lead perovskite solar cells. Energy Environ. Sci. 15, 2096–2107 (2022).

    Article  CAS  Google Scholar 

  28. Yokoyama, T. et al. Overcoming short-circuit in lead-free CH3NH3SnI3 perovskite solar cells via kinetically controlled gas–solid reaction film fabrication process. J. Phys. Chem. Lett. 7, 776–782 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Li, P. et al. Ligand engineering in tin-based perovskite solar cells. Nanomicro Lett. 15, 167 (2023).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shao, W. et al. Modulation of nucleation and crystallization in PbI2 films promoting preferential perovskite orientation growth for efficient solar cells. Energy Environ. Sci. 16, 252–264 (2023).

    Article  CAS  Google Scholar 

  31. Ye, F. et al. Roles of MACl in sequentially deposited bromine-free perovskite absorbers for efficient solar cells. Adv. Mater. 33, 2007126 (2021).

    Article  CAS  Google Scholar 

  32. Liu, Y. et al. A generic lanthanum doping strategy enabling efficient lead halide perovskite luminescence for backlights. Sci. Bull. 68, 1017–1026 (2023).

    Article  CAS  Google Scholar 

  33. Lee, J.-W. et al. Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv. Energy Mater. 5, 1501310 (2015).

    Article  Google Scholar 

  34. Liao, Y. et al. Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance. J. Am. Chem. Soc. 139, 6693–6699 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Glowienka, D. & Galagan, Y. Light intensity analysis of photovoltaic parameters for perovskite solar cells. Adv. Mater. 34, 2105920 (2022).

    Article  CAS  Google Scholar 

  36. Huang, Z., Hu, X., Liu, C., Tan, L. & Chen, Y. Nucleation and crystallization control via polyurethane to enhance the bendability of perovskite solar cells with excellent device performance. Adv. Funct. Mater. 27, 1703061 (2017).

    Article  Google Scholar 

  37. Kapil, G. et al. Tin‐lead perovskite fabricated via ethylenediamine interlayer guides to the solar cell efficiency of 21.74%. Adv. Energy Mater. 11, 2101069 (2021).

    Article  ADS  CAS  Google Scholar 

  38. Kuan, C. H. et al. Dopant‐free pyrrolopyrrole‐based (PPr) polymeric hole‐transporting materials for efficient tin‐based perovskite solar cells with stability over 6000 h. Adv. Mater. 35, 2300681 (2023).

    Article  CAS  Google Scholar 

  39. Wang, J. et al. Carbazole-based hole transport polymer for methylammonium-free tin–lead perovskite solar cells with enhanced efficiency and stability. ACS Energy Lett. 7, 3353–3361 (2022).

    Article  CAS  Google Scholar 

  40. Clark, S. J. et al. First principles methods using CASTEP. Z. Kristallogr. Cryst. Mater. 220, 567–570 (2005).

    Article  CAS  Google Scholar 

  41. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  ADS  CAS  Google Scholar 

  43. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  CAS  Google Scholar 

  44. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  ADS  Google Scholar 

  45. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  ADS  CAS  Google Scholar 

  46. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  ADS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Key Lab of Artificial Micro- and Nanostructures of Ministry of Education of China, Wuhan University. We thank the Core Facility of Wuhan University for SEM, ToF-SIMS and XPS measurements. We also acknowledge the financial support from the National Natural Science Foundation of China (Grant Numbers: 12174290, 12134010) and the Natural Science Foundation of Hubei Province, China (Grant Number: 2021CFB039).

Author information

Authors and Affiliations

Authors

Contributions

S.Z. and W.K. conceived the idea and designed the experiments. S.Z., S.F. and Chen W. developed tandem solar cells. W.M. performed DFT calculation and theoretical analysis. J.Z. conducted SCLC measurements. Y.Z. performed EIS characterization and analysis. D.P. characterized the surface and cross-section morphology of perovskite films and devices. Q.L. participated in the optimization of single-junction NBG and tandem solar cells. Cheng W. and T.W. conducted photoluminescence and transient absorption measurements and analysis. L.H. conducted XPS measurements and analysis. H.G. conducted ToF-SIMS and KPFM measurements and their analysis. W.Z. conducted the long-term device stability measurements and analysis. G.Z. conducted tandem EQE measurements. K.D. and H.C. conducted XRD measurements and their analysis. S.W. conducted UPS and absorption measurements. S.Z. and W.K. wrote the first draft of the manuscript. All authors discussed the results and contributed to the revisions of the manuscript. G.F. and W.K. supervised the project.

Corresponding authors

Correspondence to Guojia Fang or Weijun Ke.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Jiangzhao Chen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes, Figs. 1–36 and Tables 1–6.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g., a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Fu, S., Wang, C. et al. Aspartate all-in-one doping strategy enables efficient all-perovskite tandems. Nature 624, 69–73 (2023). https://doi.org/10.1038/s41586-023-06707-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06707-z

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing