Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The status of the human gene catalogue

Abstract

Scientists have been trying to identify every gene in the human genome since the initial draft was published in 2001. In the years since, much progress has been made in identifying protein-coding genes, currently estimated to number fewer than 20,000, with an ever-expanding number of distinct protein-coding isoforms. Here we review the status of the human gene catalogue and the efforts to complete it in recent years. Beside the ongoing annotation of protein-coding genes, their isoforms and pseudogenes, the invention of high-throughput RNA sequencing and other technological breakthroughs have led to a rapid growth in the number of reported non-coding RNA genes. For most of these non-coding RNAs, the functional relevance is currently unclear; we look at recent advances that offer paths forward to identifying their functions and towards eventually completing the human gene catalogue. Finally, we examine the need for a universal annotation standard that includes all medically significant genes and maintains their relationships with different reference genomes for the use of the human gene catalogue in clinical settings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A major challenge for gene annotation is how to capture the diversity of gene products deriving from each gene locus.
Fig. 2: Predicted and observed human gene counts over time.

Similar content being viewed by others

References

  1. Understanding our Genetic Inheritance: The US Human Genome Project, The First Five Years 1991-1995 (US Department of Health and Human Services, US Department of Energy, 1990).

  2. Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022). Describes the first complete gap-free assembly and annotation of a human genome, which added 140 protein-coding genes and several thousand additional non-coding genes to the human gene catalogue.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. The Encode Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  ADS  PubMed Central  Google Scholar 

  4. Kawaji, H., Kasukawa, T., Forrest, A., Carninci, P. & Hayashizaki, Y. The FANTOM5 collection, a data series underpinning mammalian transcriptome atlases in diverse cell types. Sci. Data 4, 170113 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fields, C., Adams, M. D., White, O. & Venter, J. C. How many genes in the human genome? Nat. Genet. 7, 345–346 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Clamp, M. et al. Distinguishing protein-coding and noncoding genes in the human genome. Proc. Natl Acad. Sci. USA 104, 19428–19433 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carninci, P. et al. The transcriptional landscape of the mammalian genome. Science 309, 1559–1563 (2005). Demonstrated that transcription is far more complex than previously thought, including large numbers of isoforms and more lncRNAs than protein-coding genes.

  8. Katayama, S. et al. Antisense transcription in the mammalian transcriptome. Science 309, 1564–1566 (2005).

  9. Salzberg, S. L. Next-generation genome annotation: we still struggle to get it right. Genome Biol. 20, 92 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Frankish, A. et al. GENCODE: reference annotation for the human and mouse genomes in 2023. Nucleic Acids Res. 51, D942–D949 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. O'Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–745 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Pertea, M. et al. CHESS: a new human gene catalog curated from thousands of large-scale RNA sequencing experiments reveals extensive transcriptional noise. Genome Biol. 19, 208 (2018). Presents an enhanced and comprehensive catalogue of human genes and transcripts based on very deep RNA-seq across a broad sample of human tissues.

  13. UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480–D489 (2021).

    Article  Google Scholar 

  14. Pockrandt, C., Steinegger, M. & Salzberg, S. L. PhyloCSF++: a fast and user-friendly implementation of PhyloCSF with annotation tools. Bioinformatics https://doi.org/10.1093/bioinformatics/btab756 (2021).

  15. Siepel, A. et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15, 1034–1050 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pollard, K. S., Hubisz, M. J., Rosenbloom, K. R. & Siepel, A. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 20, 110–121 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  ADS  Google Scholar 

  18. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004).

    Article  ADS  Google Scholar 

  20. Pertea, M. & Salzberg, S. L. Between a chicken and a grape: estimating the number of human genes. Genome Biol. 11, 206 (2010). Reviews the history of efforts to estimate the human gene count and highlights different computational methods that were used to help with the human gene annotation.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pruitt, K. D. et al. The consensus coding sequence (CCDS) project: identifying a common protein-coding gene set for the human and mouse genomes. Genome Res. 19, 1316–1323 (2009). Describes a joint effort among three genome annotation centres to converge on coding regions for the annotation of the human and mouse reference genomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Morales, J. et al. A joint NCBI and EMBL-EBI transcript set for clinical genomics and research. Nature 604, 310–315 (2022). Describes a project to create uniform transcript annotations for every protein-coding gene, therefore enhancing the precision of genomic medicine through the accurate identification of genomic variations.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Alioto, T. S. U12DB: a database of orthologous U12-type spliceosomal introns. Nucleic Acids Res. 35, D110–115 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Mudge, J. M. et al. Standardized annotation of translated open reading frames. Nat. Biotechnol. 40, 994–999 (2022). Outlines a community-led effort to produce a standardized catalogue of human ORFs identified through ribosome profiling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. The GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).

  26. Troskie, R. L. et al. Long-read cDNA sequencing identifies functional pseudogenes in the human transcriptome. Genome Biol. 22, 146 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sun, M. et al. Systematic functional interrogation of human pseudogenes using CRISPRi. Genome Biol. 22, 240 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu, J. & Zhang, J. Are human translated pseudogenes functional? Mol. Biol. Evol. 33, 755–760 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Ramilowski, J. A. et al. Functional annotation of human long noncoding RNAs via molecular phenotyping. Genome Res. 30, 1060–1072 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cech, T. R. & Steitz, J. A. The noncoding RNA revolution—trashing old rules to forge new ones. Cell 157, 77–94 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Mattick, J. S. et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-022-00566-8 (2023).

  32. Michelini, F. et al. Damage-induced lncRNAs control the DNA damage response through interaction with DDRNAs at individual double-strand breaks. Nat. Cell Biol. 19, 1400–1411 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lagarde, J. et al. High-throughput annotation of full-length long noncoding RNAs with capture long-read sequencing. Nat. Genet. 49, 1731–1740 (2017). Describes a large-scale application of capturing rare RNA species with antisense probes and sequencing them with long-read technology, which revealed a large number of isoforms that were not otherwise detectable.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Uszczynska-Ratajczak, B., Lagarde, J., Frankish, A., Guigó, R. & Johnson, R. Towards a complete map of the human long non-coding RNA transcriptome. Nat. Rev. Genet. 19, 535–548 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. The RNAcentral Consortium. RNAcentral 2021: secondary structure integration, improved sequence search and new member databases. Nucleic Acids Res. 49, D212–220 (2021).

    Article  Google Scholar 

  36. Liu, Y. et al. High-plex protein and whole transcriptome co-mapping at cellular resolution with spatial CITE-seq. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01676-0 (2023).

  37. Derrien, T. et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 22, 1775–1789 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stokes, T. et al. Transcriptomics for clinical and experimental biology research: hang on a seq. Adv. Genet. 4, 2200024 (2023).

  39. Deveson, I. W. et al. Universal alternative splicing of noncoding exons. Cell Syst. 6, 245–255 (2018). Describes widespread alternative splicing in non-coding exons, suggesting that non-coding exons are functionally modular and produce a seemingly limitless variety of isoforms.

    Article  CAS  PubMed  Google Scholar 

  40. Mudge, J. M. et al. Discovery of high-confidence human protein-coding genes and exons by whole-genome PhyloCSF helps elucidate 118 GWAS loci. Genome Res. 29, 2073–2087 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lewandowski, J. P. et al. The Tug1 lncRNA locus is essential for male fertility. Genome Biol. 21, 237 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Broadwell, L. J. et al. Myosin 7b is a regulatory long noncoding RNA (lncMYH7b) in the human heart. J. Biol. Chem. 296, 100694 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. He, Y. et al. Transcriptional-readthrough RNAs reflect the phenomenon of “a gene contains gene(s)” or “gene(s) within a gene” in the human genome, and thus are not chimeric RNAs. Genes 9, 40 (2018).

  44. Wang, Y. et al. Identification of the cross-strand chimeric RNAs generated by fusions of bi-directional transcripts. Nat. Commun. 12, 4645 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. de Hoon, M., Shin, J. W. & Carninci, P. Paradigm shifts in genomics through the FANTOM projects. Mamm. Genome 26, 391–402 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yip, C. W. et al. Antisense-oligonucleotide-mediated perturbation of long non-coding RNA reveals functional features in stem cells and across cell types. Cell Rep. 41, 111893 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Seal, R. L. et al. A guide to naming human non-coding RNA genes. EMBO J. 39, e103777 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Amberger, J. S., Bocchini, C. A., Scott, A. F. & Hamosh, A. OMIM.org: leveraging knowledge across phenotype-gene relationships. Nucleic Acids Res. 47, D1038–D1043 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Cline, M. S. et al. BRCA challenge: BRCA exchange as a global resource for variants in BRCA1 and BRCA2. PLoS Genet. 14, e1007752 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hunt, S. E. et al. Annotating and prioritizing genomic variants using the Ensembl Variant Effect Predictor-A tutorial. Hum. Mutat. 43, 986–997 (2022).

    Article  PubMed  Google Scholar 

  52. Schoch, K. et al. Alternative transcripts in variant interpretation: the potential for missed diagnoses and misdiagnoses. Genet. Med. 22, 1269–1275 (2020). A potent example of the considerable impact that precise gene model annotation has on genetic diagnostics, demonstrating how inaccuracies can yield false negatives or positives and potentially compromising the diagnosis of rare disease patients.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Steward, C. A. et al. Re-annotation of 191 developmental and epileptic encephalopathy-associated genes unmasks de novo variants in SCN1A. NPJ Genom. Med. 4, 31 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Maurano, M. T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190–1195 (2012).

  55. Bartonicek, N. et al. Intergenic disease-associated regions are abundant in novel transcripts. Genome Biol. 18, 241 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Aznaourova, M., Schmerer, N., Schmeck, B. & Schulte, L. N. Disease-causing mutations and rearrangements in long non-coding RNA gene loci. Front. Genet. 11, 527484 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. den Dunnen, J. T. et al. HGVS recommendations for the description of sequence variants: 2016 update. Hum. Mutat. 37, 564–569 (2016).

    Article  Google Scholar 

  58. Shumate, A. et al. Assembly and annotation of an Ashkenazi human reference genome. Genome Biol. 21, 129 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zimin, A. V. et al. A reference-quality, fully annotated genome from a Puerto Rican individual. Genetics 220, iyab227 (2022).

  60. Chao, K. H., Zimin, A. V., Pertea, M. & Salzberg, S. L. The first gapless, reference-quality, fully annotated genome from a Southern Han Chinese individual. G3: Genes, Genomes, Genetic0s 13,jkac321 (2023).

  61. Liao, W. W. et al. A draft human pangenome reference. Nature 617, 312–324 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. The FANTOM Consortium and the RIKEN PMI and CLST (DGT). A promoter-level mammalian expression atlas. Nature 507, 462–470 (2014).

    Article  ADS  Google Scholar 

  63. Gonzàlez-Porta, M., Frankish, A., Rung, J., Harrow, J. & Brazma, A. Transcriptome analysis of human tissues and cell lines reveals one dominant transcript per gene. Genome Biol. 14, R70 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Okazaki, Y. et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420, 563–573 (2002).

    Article  ADS  PubMed  Google Scholar 

  65. Babarinde, I. A. & Hutchins, A. P. The effects of sequencing depth on the assembly of coding and noncoding transcripts in the human genome. BMC Genom. 23, 487 (2022).

    Article  CAS  Google Scholar 

  66. Weatheritt, R. J., Sterne-Weiler, T. & Blencowe, B. J. The ribosome-engaged landscape of alternative splicing. Nat. Struct. Mol. Biol. 23, 1117–1123 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. van Heesch, S. et al. The translational landscape of the human heart. Cell 178, 242–260 (2019). Shows that combining ribosome profiling with deep proteomic analysis can detect peptide products translated from a large number of 5′-UTRs and annotated lncRNAs.

    Article  PubMed  Google Scholar 

  68. Duffy, E. E. et al. Developmental dynamics of RNA translation in the human brain. Nat. Neurosci. 25, 1353–1365 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Workman, R. E. et al. Nanopore native RNA sequencing of a human poly(A) transcriptome. Nat. Methods 16, 1297–1305 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mulroney, L. et al. Identification of high-confidence human poly(A) RNA isoform scaffolds using nanopore sequencing. RNA 28, 162–176 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Grapotte, M. et al. Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network. Nat. Commun. 12, 3297 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sinitcyn, P. et al. Global detection of human variants and isoforms by deep proteome sequencing. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01714-x (2023). Establishes a valuable resource for the identification of isoforms at the proteome level, and provides direct evidence that most frame-preserving alternatively spliced isoforms are translated.

  73. Glinos, D. A. et al. Transcriptome variation in human tissues revealed by long-read sequencing. Nature 608, 353–359 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mercer, T. R. et al. Targeted sequencing for gene discovery and quantification using RNA CaptureSeq. Nat. Protoc. 9, 989–1009 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Curion, F. et al. Targeted RNA sequencing enhances gene expression profiling of ultra-low input samples. RNA Biol. 17, 1741–1753 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhao, L. et al. NONCODEV6: an updated database dedicated to long non-coding RNA annotation in both animals and plants. Nucleic Acids Res. 49, D165–D171 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Hon, C.-C. et al. An atlas of human long non-coding RNAs with accurate 5′ ends. Nature 543, 199–204 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Volders, P.-J. et al. LNCipedia 5: towards a reference set of human long non-coding RNAs. Nucleic Acids Res. 47, D135–139 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Iyer, M. K. et al. The landscape of long noncoding RNAs in the human transcriptome. Nat. Genet. 47, 199–208 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ma, L. et al. LncBook: a curated knowledgebase of human long non-coding RNAs. Nucleic Acids Res. 47, 2699–2699 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the staff at the Banbury Center at Cold Spring Harbor Laboratory and the Cold Spring Harbor Laboratory Corporate Sponsor Program for supporting a workshop that all authors of this work attended. This work was supported in part by the US National Institutes of Health (NIH) under grants R01-HG006677 (to M.P., S.L.S. and A.V.), R01-MH123567 (to M.P. and S.L.S.), R35-GM130151 (to S.L.S.), U41-HG007234 (to A.F.) and U24-HG007234 (to R.G. and S.C.-S.); the Wellcome Trust under grant WT222155/Z/20/Z (to A.F.); the European Molecular Biology Laboratory (to A.F.); the US National Science Foundation under grant DBI-1759518 (to M.P.); the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under grant T2EDK-00391 (to A.G.H.); Science Foundation Ireland through Future Research Leaders award 18/FRL/6194 and the Irish Research Council through Consolidator Laureate award (IRCLA/2022/2500; to R.J.); the National Center for Biotechnology Information of the National Library of Medicine, NIH (to T.D.M., K.D.P. and S.P.); the National Health and Medical Research Council (NHMRC) APP1186371 (to C.A.W.); the Center for Genomic Medicine at the University of Utah Health, and the H.A. & Edna Benning Foundation (to M.Y.); the Spanish Ministry of Science and Innovation to the EMBL partnership, Centro de Excelencia Severo Ochoa and CERCA Programme/Generalitat de Catalunya (to R.G. and S.C.-S.); the RIKEN Center for Integrative Medical Sciences (to P.C. and H.T.); and Human Technopole (to P.C.).

Author information

Authors and Affiliations

Authors

Contributions

P.A., S.C.-S., F.M.D.L.V., T.F., A.F., T.G., R.G., J.L.H., A.G.H., R.J., T.D.M., M.P., K.D.P., S.P., H.T., I.U., A.V., C.A.W., M.Y., P.C. and S.L.S. participated in discussions at a Banbury Conference at Cold Spring Harbor Laboratory, providing the source material for this paper. All authors contributed to writing, editing and reviewing the paper.

Corresponding authors

Correspondence to Piero Carninci or Steven L. Salzberg.

Ethics declarations

Competing interests

T.F. is chief editor at Nature Genetics, a Nature Portfolio journal. T.F. was not involved in the editorial handling of this Nature paper (journals within the Nature Portfolio are editorially independent). The other authors declare no competing interests.

Peer review

Peer review information

Nature thanks Tuuli Lappalainen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amaral, P., Carbonell-Sala, S., De La Vega, F.M. et al. The status of the human gene catalogue. Nature 622, 41–47 (2023). https://doi.org/10.1038/s41586-023-06490-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06490-x

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research