Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Molecular pathology of neurodegenerative diseases by cryo-EM of amyloids

Abstract

Abnormal assembly of tau, α-synuclein, TDP-43 and amyloid-β proteins into amyloid filaments defines most human neurodegenerative diseases. Genetics provides a direct link between filament formation and the causes of disease. Developments in cryo-electron microscopy (cryo-EM) have made it possible to determine the atomic structures of amyloids from postmortem human brains. Here we review the structures of brain-derived amyloid filaments that have been determined so far and discuss their impact on research into neurodegeneration. Whereas a given protein can adopt many different filament structures, specific amyloid folds define distinct diseases. Amyloid structures thus provide a description of neuropathology at the atomic level and a basis for studying disease. Future research should focus on model systems that replicate the structures observed in disease to better understand the molecular mechanisms of disease and develop improved diagnostics and therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cryo-EM structures of brain-derived amyloids.
Fig. 2: The impact of amyloid structures on research into neurodegenerative diseases.

Similar content being viewed by others

References

  1. Alzheimer, A. Über eine eigenartige Erkrankung der Hirnrinde. Allg. Z. Psychiatr. 64, 146–148 (1907).

    Google Scholar 

  2. Fischer, O. Miliare Nekrosen mit drusigen Wucherungen der Neurofibrillen, eine regelmässige Veränderung der Hirnrinde bei seniler Demenz. Monatsschr. Psychiatr. Neurol. 22, 361–372 (1907).

    Google Scholar 

  3. Lewy, F. H. in Handbuch der Neurologie (ed. Lewandowsky, M.) 920–933 (Springer Verlag, 1912).

  4. Divry, P. & Florkin, M. Sur les propriétés optiques de l’amyloïde. C. R. Soc. Biol. 97, 1808–1810 (1927).

    Google Scholar 

  5. Ladewig, P. Double-refringence of the amyloid–Congo-red-complex in histological sections. Nature 156, 81–82 (1945).

    ADS  Google Scholar 

  6. Cohen, A. S. & Calkins, E. Electron microscopic observations on a fibrous component in amyloid of diverse origins. Nature 183, 1202–1203 (1959).

    ADS  CAS  PubMed  Google Scholar 

  7. Glenner, G. G. & Wong, C. W. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120, 885–890 (1984).

    CAS  PubMed  Google Scholar 

  8. Masters, C. L. et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl Acad. Sci. USA 82, 4245–4249 (1985).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brion, J., Passareiro, H., Nunez, J. & Flament-Durand, J. Mise en évidence immunologique de la protéine tau au niveau des lésions de dégénérescence neurofibrillaire de la maladie d’Alzheimer. Arch. Biol. 95, 229–235 (1985).

    Google Scholar 

  10. Goedert, M., Wischik, C. M., Crowther, R. A., Walker, J. E. & Klug, A. Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc. Natl Acad. Sci. USA 85, 4051–4055 (1988).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Spillantini, M. G. et al. α-Synuclein in Lewy bodies. Nature 388, 839–840 (1997).

    ADS  CAS  PubMed  Google Scholar 

  12. Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).

    ADS  CAS  PubMed  Google Scholar 

  13. Arai, T. et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun. 351, 602–611 (2006).

    CAS  PubMed  Google Scholar 

  14. Goate, A. et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349, 704–706 (1991).

    ADS  CAS  PubMed  Google Scholar 

  15. Poorkaj, P. et al. Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann. Neurol. 43, 815–825 (1998).

    CAS  PubMed  Google Scholar 

  16. Hutton, M. et al. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393, 702–705 (1998).

    ADS  CAS  PubMed  Google Scholar 

  17. Spillantini, M. G. et al. Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc. Natl Acad. Sci. USA 95, 7737–7741 (1998).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Polymeropoulos, M. H. et al. Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 276, 2045–2047 (1997).

    CAS  PubMed  Google Scholar 

  19. Kabashi, E. et al. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat. Genet. 40, 572–574 (2008).

    CAS  PubMed  Google Scholar 

  20. Sreedharan, J. et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319, 1668–1672 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Eanes, E. D. & Glenner, G. G. X-ray diffraction studies on amyloid filaments. J. Histochem. Cytochem. 16, 673–677 (1968).

    CAS  PubMed  Google Scholar 

  22. Sunde, M. et al. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 273, 729–739 (1997).

    CAS  PubMed  Google Scholar 

  23. Kidd, M. Paired helical filaments in electron microscopy of Alzheimer’s disease. Nature 197, 192–193 (1963).

    ADS  CAS  PubMed  Google Scholar 

  24. Crowther, R. A. Straight and paired helical filaments in Alzheimer disease have a common structural unit. Proc. Natl Acad. Sci. USA 88, 2288–2292 (1991).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nelson, R. et al. Structure of the cross-β spine of amyloid-like fibrils. Nature 435, 773–778 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rodriguez, J. A. et al. Structure of the toxic core of α-synuclein from invisible crystals. Nature 525, 486–490 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lu, J.-X. et al. Molecular structure of β-amyloid fibrils in Alzheimer’s disease brain tissue. Cell 154, 1257–1268 (2013).

    CAS  PubMed  Google Scholar 

  28. Petkova, A. T. et al. A structural model for Alzheimer’s β-amyloid fibrils based on experimental constraints from solid state NMR. Proc. Natl Acad. Sci. USA 99, 16742–16747 (2002).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tuttle, M. D. et al. Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein. Nat. Struct. Mol. Biol. 23, 409–415 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sachse, C., Fändrich, M. & Grigorieff, N. Paired β-sheet structure of an Aβ(1–40) amyloid fibril revealed by electron microscopy. Proc. Natl Acad. Sci. USA 105, 7462–7466 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, R. et al. Interprotofilament interactions between Alzheimer’s Aβ1–42 peptides in amyloid fibrils revealed by cryoEM. Proc. Natl Acad. Sci. USA 106, 4653–4658 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kühlbrandt, W. The resolution revolution. Science 343, 1443–1444 (2014).

    ADS  PubMed  Google Scholar 

  33. He, S. & Scheres, S. H. W. Helical reconstruction in RELION. J. Struct. Biol. 198, 163–176 (2017). This paper reports the development of new image-processing algorithms that enabled cryo-EM structure determination of amyloid filaments to sufficient resolution for de novo atomic modelling.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Fitzpatrick, A. W. P. et al. Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature 547, 185–190 (2017). The is the first report of cryo-EM structures of amyloid filaments purified from human brain—tau filaments from Alzheimer’s disease.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Weingarten, M. D., Lockwood, A. H., Hwo, S. Y. & Kirschner, M. W. A protein factor essential for microtubule assembly. Proc. Natl Acad. Sci. USA 72, 1858–1862 (1975).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Peng, C., Trojanowski, J. Q. & Lee, V. M.-Y. Protein transmission in neurodegenerative disease. Nat. Rev. Neurol. 16, 199–212 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wischik, C. M. et al. Structural characterization of the core of the paired helical filament of Alzheimer disease. Proc. Natl Acad. Sci. USA 85, 4884–4888 (1988).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Falcon, B. et al. Tau filaments from multiple cases of sporadic and inherited Alzheimer’s disease adopt a common fold. Acta Neuropathol. 136, 699–708 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Falcon, B. et al. Structures of filaments from Pick’s disease reveal a novel tau protein fold. Nature 561, 137–140 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Falcon, B. et al. Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. Nature 568, 420–423 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang, W. et al. Novel tau filament fold in corticobasal degeneration. Nature 580, 283–287 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Arakhamia, T. et al. Posttranslational modifications mediate the structural diversity of tauopathy strains. Cell 180, 633–644.e12 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Shi, Y. et al. Structure-based classification of tauopathies. Nature 598, 359–363 (2021). This article classifies tauopathies on the basis of the atomic structures of tau filaments.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hallinan, G. I. et al. Structure of tau filaments in prion protein amyloidoses. Acta Neuropathol. 142, 227–241 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Qi, C. et al. Tau filaments from amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS/PDC) adopt the CTE fold. Preprint at bioRxiv https://doi.org/10.1101/2023.04.26.538417 (2023).

  46. Qi, C. et al. Identical tau filaments in subacute sclerosing panencephalitis and chronic traumatic encephalopathy. Acta Neuropathol. Commun. 11, 74 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wesseling, H. et al. Tau PTM profiles identify patient heterogeneity and stages of Alzheimer’s disease. Cell 183, 1699–1713.e13 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Maroteaux, L., Campanelli, J. T. & Scheller, R. H. Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J. Neurosci. 8, 2804–2815 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Davidson, W. S., Jonas, A., Clayton, D. F. & George, J. M. Stabilization of α-synuclein secondary structure upon binding to synthetic membranes. J. Biol. Chem. 273, 9443–9449 (1998).

    CAS  PubMed  Google Scholar 

  50. Schweighauser, M. et al. Structures of α-synuclein filaments from multiple system atrophy. Nature 585, 464–469 (2020). This study describes the first structures of α-synuclein filaments from human brains.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang, Y. et al. Structures of α-synuclein filaments from human brains with Lewy pathology. Nature 610, 791–795 (2022).

    ADS  CAS  PubMed  Google Scholar 

  52. Yang, Y. et al. New SNCA mutation and structures of α-synuclein filaments from juvenile-onset synucleinopathy. Acta Neuropathol. 145, 561–572 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Tziortzouda, P., Van Den Bosch, L. & Hirth, F. Triad of TDP-43 control in neurodegeneration: autoregulation, localization and aggregation. Nat. Rev. Neurosci. 22, 197–208 (2021).

    CAS  PubMed  Google Scholar 

  54. Mackenzie, I. R. A. et al. A harmonized classification system for FTLD–TDP pathology. Acta Neuropathol. 122, 111–113 (2011).

    PubMed  PubMed Central  Google Scholar 

  55. Arseni, D. et al. Structure of pathological TDP-43 filaments from ALS with FTLD. Nature 601, 139–143 (2022). This study describes the first structures of TDP-43 filaments from human brains.

    ADS  CAS  PubMed  Google Scholar 

  56. Arseni, D. et al. TDP-43 forms amyloid filaments with a distinct fold in type A FTLD-TDP. Nature 620, 898–903 (2023).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tsuji, H. et al. Molecular analysis and biochemical classification of TDP-43 proteinopathy. Brain 135, 3380–3391 (2012).

    PubMed  Google Scholar 

  58. Haass, C. et al. Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature 359, 322–325 (1992).

    ADS  CAS  PubMed  Google Scholar 

  59. Shoji, M. et al. Production of the Alzheimer amyloid β protein by normal proteolytic processing. Science 258, 126–129 (1992).

    ADS  CAS  PubMed  Google Scholar 

  60. Kang, J. et al. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325, 733–736 (1987).

    ADS  CAS  PubMed  Google Scholar 

  61. Tcw, J. & Goate, A. M. Genetics of β-amyloid precursor protein in Alzheimer’s disease. Cold Spring Harb. Perspect. Med. 7, a024539 (2017).

    PubMed  PubMed Central  Google Scholar 

  62. Nilsberth, C. et al. The ‘Arctic’ APP mutation (E693G) causes Alzheimer’s disease by enhanced Aβ protofibril formation. Nat. Neurosci. 4, 887–893 (2001).

    CAS  PubMed  Google Scholar 

  63. Kollmer, M. et al. Cryo-EM structure and polymorphism of Aβ amyloid fibrils purified from Alzheimer’s brain tissue. Nat. Commun. 10, 4760 (2019). This study reports the first structures of amyloid-β filaments from human brain blood vessels.

    ADS  PubMed  PubMed Central  Google Scholar 

  64. Yang, Y. et al. Cryo-EM structures of amyloid-β 42 filaments from human brains. Science 375, 167–172 (2022). This study reports the first structures of amyloid-β filaments from human brain parenchyma.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yang, Y. et al. Cryo-EM structures of amyloid-β filaments with the Arctic mutation (E22G) from human and mouse brains. Acta Neuropathol. 145, 325–333 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Schöll, M. et al. Low PiB PET retention in presence of pathologic CSF biomarkers in Arctic APP mutation carriers. Neurology 79, 229–236 (2012).

    PubMed  Google Scholar 

  67. Schweighauser, M. et al. Age-dependent formation of TMEM106B amyloid filaments in human brains. Nature 605, 310–314 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jiang, Y. X. et al. Amyloid fibrils in FTLD-TDP are composed of TMEM106B and not TDP-43. Nature 605, 304–309 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chang, A. et al. Homotypic fibrillization of TMEM106B across diverse neurodegenerative diseases. Cell 185, 1346–1355.e15 (2022). References 67–69 report the discovery of previously unknown TMEM106B amyloid filaments using cryo-EM.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Perneel, J. et al. Accumulation of TMEM106B C-terminal fragments in neurodegenerative disease and aging. Acta Neuropathol. 145, 285–302 (2023).

    CAS  PubMed  Google Scholar 

  71. Vicente, C. T. et al. C-terminal TMEM106B fragments in human brain correlate with disease-associated TMEM106B haplotypes. Brain https://doi.org/10.1093/brain/awad133 (2023).

  72. Van Deerlin, V. M. et al. Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nat. Genet. 42, 234–239 (2010).

    PubMed  PubMed Central  Google Scholar 

  73. Klunk, W. E. et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B. Ann. Neurol. 55, 306–319 (2004).

    CAS  PubMed  Google Scholar 

  74. Xia, C.-F. et al. [18F]T807, a novel tau positron emission tomography imaging agent for Alzheimer’s disease. Alzheimers Dement. 9, 666–676 (2013).

    PubMed  Google Scholar 

  75. van Dyck, C. H. et al. Lecanemab in early Alzheimer’s disease. N. Engl. J. Med. 388, 9–21 (2023). This report describes a trial of the first mechanism-based therapy for Alzheimer’s disease with a measurable improvement in cognitive decline.

    PubMed  Google Scholar 

  76. Zhou, Y., Li, J., Nordberg, A. & Ågren, H. Dissecting the binding profile of PET tracers to corticobasal degeneration tau fibrils. ACS Chem. Neurosci. 12, 3487–3496 (2021).

    CAS  PubMed  Google Scholar 

  77. Künze, G. et al. Molecular simulations reveal distinct energetic and kinetic binding properties of [18F]PI-2620 on tau filaments from 3R/4R and 4R tauopathies. ACS Chem. Neurosci. 13, 2222–2234 (2022).

    PubMed  Google Scholar 

  78. Shi, Y. et al. Cryo-EM structures of tau filaments from Alzheimer’s disease with PET ligand APN-1607. Acta Neuropathol. 141, 697–708 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Merz, G. E. et al. Stacked binding of a small molecule PET tracer to Alzheimer’s tau paired helical filaments. Preprint at bioRxiv https://doi.org/10.1101/2022.09.30.510175 (2022).

  80. Shi, Y., Ghetti, B., Goedert, M. & Scheres, S. H. W. Cryo-EM structures of chronic traumatic encephalopathy tau filaments with PET ligand flortaucipir. J. Mol. Biol. 435, 168025 (2023).

    CAS  Google Scholar 

  81. Pagnon de la Vega, M. et al. The Uppsala APP deletion causes early onset autosomal dominant Alzheimer’s disease by altering APP processing and increasing amyloid β fibril formation. Sci. Transl. Med. 13, eabc6184 (2021).

    CAS  PubMed  Google Scholar 

  82. Gremer, L. et al. Fibril structure of amyloid-β(1–42) by cryo-electron microscopy. Science 358, 116–119 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Liu, D. et al. O-Glycosylation induces amyloid-β to form new fibril polymorphs vulnerable for degradation. J. Am. Chem. Soc. 143, 20216–20223 (2021).

    CAS  PubMed  Google Scholar 

  84. Zhang, W. et al. Heparin-induced tau filaments are polymorphic and differ from those in Alzheimer’s and Pick’s diseases. eLife 8, e43584 (2019).

    PubMed  PubMed Central  Google Scholar 

  85. Abskharon, R. et al. Cryo-EM structure of RNA-induced tau fibrils reveals a small C-terminal core that may nucleate fibril formation. Proc. Natl Acad. Sci. USA 119, e2119952119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Frieg, B. et al. The 3D structure of lipidic fibrils of α-synuclein. Nat. Commun. 13, 6810 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Li, B. et al. Cryo-EM of full-length α-synuclein reveals fibril polymorphs with a common structural kernel. Nat. Commun. 9, 3609 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  88. Li, Y. et al. Amyloid fibril structure of α-synuclein determined by cryo-electron microscopy. Cell Res. 28, 897–903 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Guerrero-Ferreira, R. et al. Cryo-EM structure of α-synuclein fibrils. eLife 7, e36402 (2018).

    PubMed  PubMed Central  Google Scholar 

  90. Ni, X., McGlinchey, R. P., Jiang, J. & Lee, J. C. Structural insights into α-synuclein fibril polymorphism: effects of Parkinson’s disease-related C-terminal truncations. J. Mol. Biol. 431, 3913–3919 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Guerrero-Ferreira, R. et al. Two new polymorphic structures of human full-length α-synuclein fibrils solved by cryo-electron microscopy. eLife 8, e48907 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Boyer, D. R. et al. Structures of fibrils formed by α-synuclein hereditary disease mutant H50Q reveal new polymorphs. Nat. Struct. Mol. Biol. 26, 1044–1052 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhao, K. et al. Parkinson’s disease-related phosphorylation at Tyr39 rearranges α-synuclein amyloid fibril structure revealed by cryo-EM. Proc. Natl Acad. Sci. USA 117, 20305–20315 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhao, K. et al. Parkinson’s disease associated mutation E46K of α-synuclein triggers the formation of a distinct fibril structure. Nat. Commun. 11, 2643 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sun, Y. et al. Cryo-EM structure of full-length α-synuclein amyloid fibril with Parkinson’s disease familial A53T mutation. Cell Res. 30, 360–362 (2020).

    PubMed  PubMed Central  Google Scholar 

  96. Boyer, D. R. et al. The α-synuclein hereditary mutation E46K unlocks a more stable, pathogenic fibril structure. Proc. Natl Acad. Sci. USA 117, 3592–3602 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  97. Long, H. et al. Wild-type α-synuclein inherits the structure and exacerbated neuropathology of E46K mutant fibril strain by cross-seeding. Proc. Natl Acad. Sci. USA 118, e2012435118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Sun, Y. et al. The hereditary mutation G51D unlocks a distinct fibril strain transmissible to wild-type α-synuclein. Nat. Commun. 12, 6252 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cao, Q., Boyer, D. R., Sawaya, M. R., Ge, P. & Eisenberg, D. S. Cryo-EM structures of four polymorphic TDP-43 amyloid cores. Nat. Struct. Mol. Biol. 26, 619–627 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Li, Q., Babinchak, W. M. & Surewicz, W. K. Cryo-EM structure of amyloid fibrils formed by the entire low complexity domain of TDP-43. Nat. Commun. 12, 1620 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kumar, S. T. et al. Seeding the aggregation of TDP-43 requires post-fibrillization proteolytic cleavage. Nat. Neurosci. 26, 983–996 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Stern A. M, et al.Abundant Aβ fibrils in ultracentrifugal supernatants of aqueous extracts from Alzheimer’s disease brains. Neuron 111, 2012–2020.e4 (2023).

    PubMed  Google Scholar 

  103. Riek, R. & Eisenberg, D. S. The activities of amyloids from a structural perspective. Nature 539, 227–235 (2016).

    ADS  PubMed  Google Scholar 

  104. Lövestam, S. et al. Assembly of recombinant tau into filaments identical to those of Alzheimer’s disease and chronic traumatic encephalopathy. eLife 11, e76494 (2022). This article describes an in vitro assembly reaction with recombinant protein that replicates the structures of filaments extracted from human brains.

    PubMed  PubMed Central  Google Scholar 

  105. Wischik, C. M. et al. Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer disease. Proc. Natl Acad. Sci. USA 85, 4506–4510 (1988).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  106. Al-Hilaly, Y. K. et al. Tau (297–391) forms filaments that structurally mimic the core of paired helical filaments in Alzheimer’s disease brain. FEBS Lett. 594, 944–950 (2020).

    CAS  PubMed  Google Scholar 

  107. Goedert, M., Spillantini, M. G., Cairns, N. J. & Crowther, R. A. Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms. Neuron 8, 159–168 (1992).

    CAS  PubMed  Google Scholar 

  108. Lövestam, S. & Scheres, S. H. W. High-throughput cryo-EM structure determination of amyloids. Faraday Discuss. 240, 243–260 (2022).

    ADS  PubMed  PubMed Central  Google Scholar 

  109. Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).

    CAS  PubMed  Google Scholar 

  110. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24, 197–211 (2003).

    PubMed  Google Scholar 

  111. Brettschneider, J. et al. Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann. Neurol. 74, 20–38 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Irwin, D. J. et al. Deep clinical and neuropathological phenotyping of Pick disease. Ann. Neurol. 79, 272–287 (2016).

    CAS  PubMed  Google Scholar 

  113. Duyckaerts, C., Uchihara, T., Seilhean, D., He, Y. & Hauw, J. J. Dissociation of Alzheimer type pathology in a disconnected piece of cortex. Acta Neuropathol. 93, 501–507 (1997).

    CAS  PubMed  Google Scholar 

  114. Frost, B. & Diamond, M. I. Prion-like mechanisms in neurodegenerative diseases. Nat. Rev. Neurosci. 11, 155–159 (2010).

    CAS  PubMed  Google Scholar 

  115. Jucker, M. & Walker, L. C. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501, 45–51 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  116. Prusiner, S. B. Prions. Proc. Natl Acad. Sci. USA 95, 13363–13383 (1998).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  117. Holec, S. A. M. & Woerman, A. L. Evidence of distinct α-synuclein strains underlying disease heterogeneity. Acta Neuropathol. 142, 73–86 (2021).

    CAS  PubMed  Google Scholar 

  118. Jarrett, J. T. & Lansbury, P. T. Seeding ‘one-dimensional crystallization’ of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73, 1055–1058 (1993).

    CAS  PubMed  Google Scholar 

  119. Sanders, D. W. et al. Distinct tau prion strains propagate in cells and mice and define different tauopathies. Neuron 82, 1271–1288 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Meyer-Luehmann, M. et al. Exogenous induction of cerebral β-amyloidogenesis is governed by agent and host. Science 313, 1781–1784 (2006).

    ADS  CAS  PubMed  Google Scholar 

  121. Clavaguera, F. et al. Transmission and spreading of tauopathy in transgenic mouse brain. Nat. Cell Biol. 11, 909–913 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Mougenot, A.-L. et al. Prion-like acceleration of a synucleinopathy in a transgenic mouse model. Neurobiol. Aging 33, 2225–2228 (2012).

    CAS  PubMed  Google Scholar 

  123. Luk, K. C. et al. Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice. J. Exp. Med. 209, 975–986 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Porta, S. et al. Patient-derived frontotemporal lobar degeneration brain extracts induce formation and spreading of TDP-43 pathology in vivo. Nat. Commun. 9, 4220 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  125. Burger, D., Fenyi, A., Bousset, L., Stahlberg, H. & Melki, R. Cryo-EM structure of α-synuclein fibrils amplified by PMCA from PD and MSA patient brains. Preprint at bioRxiv https://doi.org/10.1101/2021.07.08.451588 (2021).

  126. Fan, Y. et al. Conformational change of α-synuclein fibrils in cerebrospinal fluid from different clinical phases of Parkinson’s disease. Structure 31, 78–87.e5 (2023).

    CAS  PubMed  Google Scholar 

  127. Ghosh, U., Thurber, K. R., Yau, W.-M. & Tycko, R. Molecular structure of a prevalent amyloid-β fibril polymorph from Alzheimer’s disease brain tissue. Proc. Natl Acad. Sci. USA 118, e2023089118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Xiao, Y. et al. Aβ(1–42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer’s disease. Nat. Struct. Mol. Biol. 22, 499–505 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Qiang, W., Yau, W.-M., Lu, J.-X., Collinge, J. & Tycko, R. Structural variation in amyloid-β fibrils from Alzheimer’s disease clinical subtypes. Nature 541, 217–221 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lövestam, S. et al. Seeded assembly in vitro does not replicate the structures of α-synuclein filaments from multiple system atrophy. FEBS Open Bio 11, 999–1013 (2021).

    PubMed  PubMed Central  Google Scholar 

  131. Tarutani, A. Cryo-EM structures of tau filaments from SH-SY5Y cells seeded with brain extracts from cases of Alzheimer’s disease and corticobasal degeneration. FEBS Open Bio 13, 1394–1404 (2023).

    PubMed  PubMed Central  Google Scholar 

  132. Shahnawaz, M. et al. Discriminating α-synuclein strains in Parkinson’s disease and multiple system atrophy. Nature 578, 273–277 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  133. Siderowf, A. et al. Assessment of heterogeneity among participants in the Parkinson’s Progression Markers Initiative cohort using α-synuclein seed amplification: a cross-sectional study. Lancet Neurol. 22, 407–417 (2023).

    CAS  PubMed  Google Scholar 

  134. Cohen, S. I. A. et al. Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism. Proc. Natl Acad. Sci. USA 110, 9758–9763 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  135. Benilova, I., Karran, E. & De Strooper, B. The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat. Neurosci. 15, 349–357 (2012).

    CAS  PubMed  Google Scholar 

  136. Cremades, N. et al. Direct observation of the interconversion of normal and toxic forms of α-synuclein. Cell 149, 1048–1059 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Weismiller, H. A. et al. Structural disorder in four-repeat Tau fibrils reveals a new mechanism for barriers to cross-seeding of Tau isoforms. J. Biol. Chem. 293, 17336–17348 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Jackson, S. J. et al. Short fibrils constitute the major species of seed-competent tau in the brains of mice transgenic for human P301S tau. J. Neurosci. 36, 762–772 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Legname, G. et al. Continuum of prion protein structures enciphers a multitude of prion isolate-specified phenotypes. Proc. Natl Acad. Sci. USA 103, 19105–19110 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  140. Morozova, O. A., March, Z. M., Robinson, A. S. & Colby, D. W. Conformational features of tau fibrils from Alzheimer’s disease brain are faithfully propagated by unmodified recombinant protein. Biochemistry 52, 6960–6967 (2013).

    CAS  PubMed  Google Scholar 

  141. Falcon, B. et al. Conformation determines the seeding potencies of native and recombinant tau aggregates. J. Biol. Chem. 290, 1049–1065 (2015).

    CAS  PubMed  Google Scholar 

  142. Saito, T. et al. Single App knock-in mouse models of Alzheimer’s disease. Nat. Neurosci. 17, 661–663 (2014).

    CAS  PubMed  Google Scholar 

  143. Leistner, C. et al. The in-tissue molecular architecture of β-amyloid in the mammalian brain. Nat. Commun. 14, 2833 (2022).

    ADS  Google Scholar 

  144. Zielinski, M. et al. Cryo-EM structures of amyloid-β fibrils from Alzheimer’s disease mouse models. Preprint at bioRxiv https://doi.org/10.1101/2023.03.30.534981 (2023).

  145. Hallinan, G. I. et al. Cryo-EM structures of prion protein filaments from Gerstmann–Sträussler–Scheinker disease. Acta Neuropathol. 144, 509–520 (2022). This study reports first structures of prion protein filaments from human brains.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Murray, K. A. et al. De novo designed protein inhibitors of amyloid aggregation and seeding. Proc. Natl Acad. Sci. USA 119, e2206240119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Sahtoe, D. D. et al. Design of amyloidogenic peptide traps. Preprint at bioRxiv https://doi.org/10.1101/2023.01.13.523785 (2023).

  148. Seidler, P. M. et al. Structure-based discovery of small molecules that disaggregate Alzheimer’s disease tissue derived tau fibrils in vitro. Nat. Commun. 13, 5451 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  149. Englund, H. et al. Sensitive ELISA detection of amyloid-β protofibrils in biological samples. J. Neurochem. 103, 334–345 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank A. Bertolotti, T. Crowther, J. Hardy, S. Lövestam, J. Löwe, J. Macdonald, C. Mathis, A. Murzin, M. G. Spillantini, A. Stern, B. de Strooper, S. Tetter and Y. Yang for helpful comments. We are grateful to past and present members of our groups and facilities at the Medical Research Council Laboratory of Molecular Biology for their contributions. We especially thank B. Ghetti and M. Hasegawa for their long-term collaboration, and family members of the deceased who donated brains. This work was supported by the Medical Research Council, as part of United Kingdom Research and Innovation (MC_UP_A025-1013 to S.H.W.S., MC_UP_1201/25, to B.R.-F. and MC_U105184291 to M.G.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of this manuscript.

Corresponding authors

Correspondence to Sjors H. W. Scheres, Benjamin Ryskeldi-Falcon or Michel Goedert.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Christian Haass, Henning Stahlberg and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scheres, S.H.W., Ryskeldi-Falcon, B. & Goedert, M. Molecular pathology of neurodegenerative diseases by cryo-EM of amyloids. Nature 621, 701–710 (2023). https://doi.org/10.1038/s41586-023-06437-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06437-2

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing