Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Signatures of superconductivity near 80 K in a nickelate under high pressure

Abstract

Although high-transition-temperature (high-Tc) superconductivity in cuprates has been known for more than three decades, the underlying mechanism remains unknown1,2,3,4. Cuprates are the only unconventional superconductors that exhibit bulk superconductivity with Tc above the liquid-nitrogen boiling temperature of 77 K. Here we observe that high-pressure resistance and mutual inductive magnetic susceptibility measurements showed signatures of superconductivity in single crystals of La3Ni2O7 with maximum Tc of 80 K at pressures between 14.0 GPa and 43.5 GPa. The superconducting phase under high pressure has an orthorhombic structure of Fmmm space group with the \(3{d}_{{x}^{2}-{y}^{2}}\) and \(3{d}_{{z}^{2}}\) orbitals of Ni cations strongly mixing with oxygen 2p orbitals. Our density functional theory calculations indicate that the superconductivity emerges coincidently with the metallization of the σ-bonding bands under the Fermi level, consisting of the \(3{d}_{{z}^{2}}\) orbitals with the apical oxygen ions connecting the Ni–O bilayers. Thus, our discoveries provide not only important clues for the high-Tc superconductivity in this Ruddlesden–Popper double-layered perovskite nickelates but also a previously unknown family of compounds to investigate the high-Tc superconductivity mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural characterizations of pressurized La3Ni2O7.
Fig. 2: DFT calculations for La3Ni2O7 at 1.6 GPa and 29.5 GPa.
Fig. 3: Superconducting transitions in La3Ni2O7 single crystals under pressure.
Fig. 4: Phase diagram of the high-temperature superconductivity in La3Ni2O7 single crystals.

Data availability

Source data are provided with this paper.

References

  1. Bednorz, J. G. & Müller, K. A. Possible highTc superconductivity in the Ba–La–Cu–O system. Z. Phys. B Condens. Matter 64, 189–193 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article  ADS  CAS  Google Scholar 

  4. Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Zhang, F. C. & Rice, T. M. Effective Hamiltonian for the superconducting Cu oxides. Phys. Rev. B 37, 3759–3761 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Gao, M., Lu, Z.-Y. & Xiang, T. Finding high-temperature superconductors by metallizing the σ-bonding electrons. Physics 44, 421–426 (2015).

    Google Scholar 

  7. Shen, Z.-X. et al. Anomalously large gap anisotropy in the a-b plane of Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett. 70, 1553–1556 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Wollman, D. A., Van Harlingen, D. J., Lee, W. C., Ginsberg, D. M. & Leggett, A. J. Experimental determination of the superconducting pairing state in YBCO from the phase coherence of YBCO-Pb dc SQUIDs. Phys. Rev. Lett. 71, 2134–2137 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Hayward, M. A., Green, M. A., Rosseinsky, M. J. & Sloan, J. Sodium hydride as a powerful reducing agent for topotactic oxide deintercalation: synthesis and characterization of the nickel(I) oxide LaNiO2. J. Am. Chem. Soc. 121, 8843–8854 (1999).

    Article  CAS  Google Scholar 

  10. Boris, A. V. et al. Dimensionality control of electronic phase transitions in nickel-oxide superlattices. Science 332, 937–940 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Disa, A. S. et al. Orbital engineering in symmetry-breaking polar heterostructures. Phys. Rev. Lett. 114, 026801 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Li, D. et al. Superconductivity in an infinite-layer nickelate. Nature 572, 624–627 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Osada, M., Wang, B. Y., Lee, K., Li, D. & Hwang, H. Y. Phase diagram of infinite layer praseodymium nickelate Pr1−xSrxNiO2 thin films. Phys. Rev. Mater. 4, 121801 (2020).

    Article  CAS  Google Scholar 

  14. Pan, G. A. et al. Superconductivity in a quintuple-layer square-planar nickelate. Nat. Mater. 21, 160–164 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Wang, N. N. et al. Pressure-induced monotonic enhancement of Tc to over 30 K in superconducting Pr0.82Sr0.18NiO2 thin films. Nat. Commun. 13, 4367 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ding, X. et al. Critical role of hydrogen for superconductivity in nickelates. Nature 615, 50–55 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Li, Q. et al. Absence of superconductivity in bulk Nd1−xSrxNiO2. Commun. Mater. 1, 16 (2020).

    Article  Google Scholar 

  18. Wang, B.-X. et al. Synthesis and characterization of bulk Nd1−xSrxNiO2 and Nd1−xSrxNiO3. Phys. Rev. Mater. 4, 084409 (2020).

    Article  ADS  CAS  Google Scholar 

  19. Huo, M. et al. Synthesis and properties of La1–xSrxNiO3 and La1–xSrxNiO2. Chin. Phys. B 31, 107401 (2022).

    Article  ADS  Google Scholar 

  20. Nica, E. M. et al. Theoretical investigation of superconductivity in trilayer square-planar nickelates. Phys. Rev. B 102, 020504 (2020).

    Article  ADS  CAS  Google Scholar 

  21. Lechermann, F. Multiorbital processes rule the Nd1−xSrxNiO2 normal state. Phys. Rev. X 10, 041002 (2020).

    CAS  Google Scholar 

  22. Voronin, V. I. et al. Neutron diffraction, synchrotron radiation and EXAFS spectroscopy study of crystal structure peculiarities of the lanthanum nickelates Lan+1NinOy (n=1,2,3). Nucl. Instrum. Methods Phys. Res. A 470, 202–209 (2001).

    Article  ADS  CAS  Google Scholar 

  23. Liu, Z. et al. Evidence for charge and spin density waves in single crystals of La3Ni2O7 and La3Ni2O6. Sci. Chin. Phys. Mech. Astron. 66, 217411 (2023).

    Article  ADS  CAS  Google Scholar 

  24. Pardo, V. & Pickett, W. E. Metal-insulator transition in layered nickelates La3Ni2O7−δ (δ = 0.0, 0.5, 1). Phys. Rev. B 83, 245128 (2011).

    Article  ADS  Google Scholar 

  25. Adhikary, P., Bandyopadhyay, S., Das, T., Dasgupta, I. & Saha-Dasgupta, T. Orbital-selective superconductivity in a two-band model of infinite-layer nickelates. Phys. Rev. B 102, 100501 (2020).

    Article  ADS  CAS  Google Scholar 

  26. Sakakibara, H. et al. Orbital mixture effect on the Fermi-surface–Tc correlation in the cuprate superconductors: bilayer vs. single layer. Phys. Rev. B 89, 224505 (2014).

    Article  ADS  Google Scholar 

  27. Choi, H. J., Roundy, D., Sun, H., Cohen, M. L. & Louie, S. G. The origin of the anomalous superconducting properties of MgB2. Nature 418, 758–760 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Gao, M., Lu, Z.-Y. & Xiang, T. Prediction of phonon-mediated high-temperature superconductivity in Li3B4C2. Phys. Rev. B 91, 045132 (2015).

    Article  ADS  Google Scholar 

  29. Drozdov, A. P. et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 569, 528–531 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Wu, G., Neumeier, J. J. & Hundley, M. F. Magnetic susceptibility, heat capacity, and pressure dependence of the electrical resistivity of La3Ni2O7 and La4Ni3O10. Phys. Rev. B 63, 245120 (2001).

    Article  ADS  Google Scholar 

  31. Hosoya, T. et al. Pressure studies on the electrical properties in R2-xSrxNi1-yCuyO4+δ (R=La, Nd) and La3Ni2O7+δ. J. Phys. Conf. Ser. 121, 052013 (2008).

    Article  Google Scholar 

  32. Mochizuki, Y., Akamatsu, H., Kumagai, Y. & Oba, F. Strain-engineered Peierls instability in layered perovskite La3Ni2O7 from first principles. Phys. Rev. Mater. 2, 125001 (2018).

    Article  Google Scholar 

  33. Yuan, J. et al. Scaling of the strange-metal scattering in unconventional superconductors. Nature 602, 431–436 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Sun, L. et al. Re-emerging superconductivity at 48 kelvin in iron chalcogenides. Nature 483, 67–69 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Takahashi, H. et al. Pressure-induced superconductivity in the iron-based ladder material BaFe2S3. Nat. Mater. 14, 1008–1012 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Deemyad, S. & Schilling, J. S. Superconducting phase diagram of Li metal in nearly hydrostatic pressures up to 67 GPa. Phys. Rev. Lett. 91, 167001 (2003).

    Article  ADS  PubMed  Google Scholar 

  37. Chen, X. J. et al. Enhancement of superconductivity by pressure-driven competition in electronic order. Nature 466, 950–953 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Chu, C. W. et al. Superconductivity above 150 K in HgBa2Ca2Cu3O8+δ at high pressures. Nature 365, 323–325 (1993).

    Article  ADS  CAS  Google Scholar 

  39. Gu, Q. & Wen, H.-H. Superconductivity in nickel-based 112 systems. Innovation 3, 100202 (2022).

    CAS  PubMed  Google Scholar 

  40. Zeng, S. et al. Superconductivity in infinite-layer nickelate La1−xCaxNiO2 thin films. Sci. Adv. 8, eabl9927 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hsu, Y.-T. et al. Insulator-to-metal crossover near the edge of the superconducting dome in Nd1−xSrxNiO2. Phys. Rev. Res. 3, L042015 (2021).

    Article  CAS  Google Scholar 

  42. Zhang, Z., Greenblatt, M. & Goodenough, J. B. Synthesis, structure, and properties of the layered perovskite La3Ni2O7-δ. J. Solid State Chem. Solids. 108, 402–409 (1994).

    Article  ADS  CAS  Google Scholar 

  43. Taniguchi, S. et al. Transport, magnetic and thermal properties of La3Ni2O7-δ. J. Phys. Soc. Jpn. 64, 1644–1650 (1995).

    Article  ADS  CAS  Google Scholar 

  44. Zhi-An, R. et al. Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm[O1-xFx] FeAs. Chin. Phys. Lett. 25, 2215–2216 (2008).

    Article  ADS  Google Scholar 

  45. Prescher, C. & Prakapenka, V. B. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Press. Res. 35, 223–230 (2015).

    Article  ADS  CAS  Google Scholar 

  46. Coelho, A. A. TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Crystallogr. 51, 210–218 (2018).

    Article  CAS  Google Scholar 

  47. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  CAS  Google Scholar 

  48. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  ADS  CAS  Google Scholar 

  49. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

M.W. acknowledges the support of the National Natural Science Foundation of China (grant no. 12174454), the Guangdong Basic and Applied Basic Research Funds (grant no. 2021B1515120015) and the Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices (grant no. 2022B1212010008). H.S. acknowledges the support of the Guangzhou Basic and Applied Basic Research Funds (grant no. 202201011123). D.-X.Y. is supported by NKRDPC-2022YFA1402802, NKRDPC-2018YFA0306001, NSFC-92165204, NSFC-11974432 and the Shenzhen International Quantum Academy. P.Y., B.W. and J.C. are supported by the National Natural Science Foundation of China (grant nos 12025408 and 11921004), the Beijing Natural Science Foundation (grant no. Z190008), the National Key R&D Program of China (grant no. 2021YFA1400200) and the Strategic Priority Research Program of CAS (grant no. XDB33000000). A portion of this work was carried out at the Synergetic Extreme Condition User Facility. High-pressure synchrotron X-ray measurements were performed at the 4W2 High-Pressure Station, Beijing Synchrotron Radiation Facility, which is supported by the Chinese Academy of Sciences (grant nos. KJCX2-SW-N20 and KJCX2-SW-N03).

Author information

Authors and Affiliations

Authors

Contributions

M.W. designed the project; Z.L. and M.H. grew the single crystals; H.S., M.H. and J.L. performed the resistance measurements at varying pressures; H.S. performed the synchrotron XRD measurements; H.S. and J.L. conducted the high-pressure susceptibility measurements with the support of L.T. and Z.M.; magnetic susceptibility for pressures below 14 GPa (data not shown) was measured with the support of P.Y., B.W. and J.C.; H.S., Y.H. and M.H. conducted the structural analysis; D.-X.Y. and X.H. performed the DFT calculations. G.-M.Z. proposed a relevant physical picture to understand both the numerical and experimental results. M.W. and G.-M.Z. wrote the paper with inputs from all co-authors.

Corresponding authors

Correspondence to Guang-Ming Zhang or Meng Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Ni-O distances in the NiO6 octahedra of La3Ni2O7 under pressure.

a, Ni-O distances against pressure. The lattice constants are refined from synchrotron X-ray diffraction. The Ni-O distances are determined from optimization by the density functional theory and used in the calculations. b, Sketch of the NiO6 octahedra. The d1, d2, d3, and d4 label the corresponding Ni-O distances.

Source data

Extended Data Fig. 2 Density functional theory calculations for La3Ni2O7 at 1.6 and 29.5 GPa.

af, Orbital-decomposed band structures of La3Ni2O7 at ad 1.6 GPa and ef 29.5GPa. i, The total density of states at 1.6 and 29.5 GPa near the Fermi level. j, Schematic of the three-dimensional reciprocal unit cell. The red lines correspond to the paths of the electronic bands. k, Calculated two-dimensional Fermi surfaces of La3Ni2O7 in a Brillouin zone at 1.6 GPa marked by a black square. The Fermi surfaces consist of electrons bands (α1,2) and a hole band (β1). l, Two-dimensional Fermi surfaces of La3Ni2O7 at 29.5 GPa. Additional hole bands (Ni \(3{d}_{{z}^{2}}\)) cross the Fermi level.

Source data

Extended Data Fig. 3 Resistance measurements of La3Ni2O7 single crystals under pressure acquired in different runs.

ac, Resistance curves obtained from: a, Run 1, b, Run 3, and c, Run 4 measured with a gasket of cubic boron nitride without a pressure-transmitting medium. The vertical dashed lines indicate the onset superconducting transition temperature Tc. The inset in a is a photo showing the electrodes for the high-pressure measurements. A current of 10 μA was used for the measurements.

Source data

Extended Data Fig. 4 Suppression of superconductivity of La3Ni2O7 by external magnetic fields.

a,b, Resistance measured at a, 29.1 GPa and b, 43.5 GPa in the Run 2 with KBr as the pressure transmitting medium. The horizontal dashed lines mark 0.9 × R(Tconset), where R(Tconset) is the resistance at the onset Tc.

Source data

Extended Data Fig. 5 Diamagnetic response measurements of La3Ni2O7 under pressure using the magnetic inductive technique.

ac, Raw data of the real part of the ac susceptibility showing a prominent diamagnetic response at 28.7 GPa with a current magnitude of 50 mA and frequency of a 373, b 393, c 423 Hz. df, Identical measurements at 25.2 GPa. The red dashed lines are fitted backgrounds following the trend above the superconducting transitions. Insets in af show the diamagnetic signals obtained by subtracting the fitted linear backgrounds. The transition temperature shifts because the pressure changes for each measurement. g, h, Diamagnetic response measurements at 5.3 GPa measured during the decompressing process with a 373 and 393 Hz frequency current, respectively. i, The background measurement of the diamagnetic response of the cell without a sample. The inset in i is an image of the experimental set-up for the ac susceptibility measurements in a diamond-anvil cell, with a signal coil around the diamond anvils and a neighbor compensating coil.

Source data

Extended Data Fig. 6 Magnetic susceptibility of La3Ni2O7 measured at 13.0 GPa with the palm-type cubit anvil cell.

The sharp drop at 3.6 K corresponds to the superconducting transition of Pb, which is used to calibrate the pressure. No other obvious transitions are reflected from the magnetic susceptibility.

Source data

Extended Data Table 1 Lattice parameters refined from experiments and optimized theoretically

Supplementary information

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Huo, M., Hu, X. et al. Signatures of superconductivity near 80 K in a nickelate under high pressure. Nature 621, 493–498 (2023). https://doi.org/10.1038/s41586-023-06408-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06408-7

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing