Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

From target discovery to clinical drug development with human genetics

Abstract

The substantial investments in human genetics and genomics made over the past three decades were anticipated to result in many innovative therapies. Here we investigate the extent to which these expectations have been met, excluding cancer treatments. In our search, we identified 40 germline genetic observations that led directly to new targets and subsequently to novel approved therapies for 36 rare and 4 common conditions. The median time between genetic target discovery and drug approval was 25 years. Most of the genetically driven therapies for rare diseases compensate for disease-causing loss-of-function mutations. The therapies approved for common conditions are all inhibitors designed to pharmacologically mimic the natural, disease-protective effects of rare loss-of-function variants. Large biobank-based genetic studies have the power to identify and validate a large number of new drug targets. Genetics can also assist in the clinical development phase of drugs—for example, by selecting individuals who are most likely to respond to investigational therapies. This approach to drug development requires investments into large, diverse cohorts of deeply phenotyped individuals with appropriate consent for genetically assisted trials. A robust framework that facilitates responsible, sustainable benefit sharing will be required to capture the full potential of human genetics and genomics and bring effective and safe innovative therapies to patients quickly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The various steps along the drug discovery and clinical development pipeline.
Fig. 2: Overview of 40 targets for 47 approved, first-in-class, genetically driven non-cancer therapies.

Similar content being viewed by others

References

  1. Arrowsmith, J. & Miller, P. Trial watch: phase II and phase III attrition rates 2011-2012. Nat. Rev. Drug Discov. 12, 569 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Harrison, R. K. Phase II and phase III failures: 2013-2015. Nat. Rev. Drug Discov. 15, 817–818 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Wouters, O. J., McKee, M. & Luyten, J. Estimated research and development investment needed to bring a new medicine to market, 2009-2018. JAMA 323, 844–853 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cook, D. et al. Lessons learned from the fate of AstraZeneca’s drug pipeline: a five-dimensional framework. Nat. Rev. Drug Discov. 13, 419–431 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Razuvayevskaya, O., Lopez, I., Dunham, I. & Ochoa, D. Why clinical trials stop: the role of genetics. Preprint at medRxiv https://doi.org/10.1101/2023.02.07.23285407 (2023).

  6. Collins, F. S. Shattuck lecture—Medical and societal consequences of the Human Genome Project. N. Engl. J. Med. 341, 28–37 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Spotlight on cancer genomics. Nat. Cancer 1, 265–266 (2020).

  10. Nguengang Wakap, S. et al. Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. Eur. J. Hum. Genet. 28, 165–173 (2020).

    Article  PubMed  Google Scholar 

  11. Abdellaoui, A., Yengo, L., Verweij, K. J. H. & Visscher, P. M. 15 years of GWAS discovery: realizing the promise. Am. J. Hum. Genet. 110, 179–194 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Malone, E. R., Oliva, M., Sabatini, P. J. B., Stockley, T. L. & Siu, L. L. Molecular profiling for precision cancer therapies. Genome Med. 12, 8 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Waarts, M. R., Stonestrom, A. J., Park, Y. C. & Levine, R. L. Targeting mutations in cancer. J. Clin. Invest. 132, e154943 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sabatine, M. S. et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N. Engl. J. Med. 372, 1500–1509 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Hall, S. S. Genetics: a gene of rare effect. Nature 496, 152–155 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Abifadel, M. et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 34, 154–156 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Zhao, Z. et al. Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote. Am. J. Hum. Genet. 79, 514–523 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cohen, J. C., Boerwinkle, E., Mosley, T. H. Jr. & Hobbs, H. H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 354, 1264–1272 (2006). To our knowledge, refs. 16–18 provided the first genetic rationale for the discovery and development of PCKS9 inhibitors as a safe way to treat familial hypercholesterolemia and coronary artery disease.

    Article  CAS  PubMed  Google Scholar 

  19. Raedler, L. A. Praluent (alirocumab): first PCSK9 inhibitor approved by the FDA for hypercholesterolemia. Am. Health Drug Benefits 9, 123–126 (2016).

    PubMed  PubMed Central  Google Scholar 

  20. King, E. A., Davis, J. W. & Degner, J. F. Are drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval. PLoS Genet. 15, e1008489 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nelson, M. R. et al. The support of human genetic evidence for approved drug indications. Nat. Genet. 47, 856–860 (2015). References 20,21  demonstrated retrospectively that genetically supported targets are more likely to lead to approved therapies.

    Article  CAS  PubMed  Google Scholar 

  22. Ochoa, D. et al. Human genetics evidence supports two-thirds of the 2021 FDA-approved drugs. Nat. Rev. Drug Discov. 21, 551 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Seidah, N. G. The PCSK9 revolution and the potential of PCSK9-based therapies to reduce LDL-cholesterol. Glob. Cardiol. Sci. Pract. 2017, e201702 (2017).

    PubMed  PubMed Central  Google Scholar 

  24. Ochoa, D. et al. The next-generation Open Targets Platform: reimagined, redesigned, rebuilt. Nucleic Acids Res. 51, D1353–D1359 (2022).

    Article  PubMed Central  Google Scholar 

  25. Wishart, D. S. et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 34, D668–672 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Sparrow, A. J., Watkins, H., Daniels, M. J., Redwood, C. & Robinson, P. Mavacamten rescues increased myofilament calcium sensitivity and dysregulation of Ca2+ flux caused by thin filament hypertrophic cardiomyopathy mutations. Am. J. Physiol. Heart. Circ. Physiol. 318, H715–h722 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Watkins, H., Ashrafian, H. & Redwood, C. Inherited cardiomyopathies. N. Engl. J. Med. 364, 1643–1656 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Toepfer, C. N. et al. Myosin sequestration regulates sarcomere function, cardiomyocyte energetics, and metabolism, informing the pathogenesis of hypertrophic cardiomyopathy. Circulation 141, 828–842 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Santos, R. et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16, 19–34 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Brinkman, R. R., Dube, M. P., Rouleau, G. A., Orr, A. C. & Samuels, M. E. Human monogenic disorders—a source of novel drug targets. Nat. Rev. Genet. 7, 249–260 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Desnick, R. J. & Schuchman, E. H. Enzyme replacement therapy for lysosomal diseases: lessons from 20 years of experience and remaining challenges. Annu. Rev. Genomics Hum. Genet. 13, 307–335 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Yang, H. et al. Nanomolar affinity small molecule correctors of defective Delta F508-CFTR chloride channel gating. J. Biol. Chem. 278, 35079–35085 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Van Goor, F. et al. Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc. Natl Acad. Sci. USA 106, 18825–18830 (2009).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  34. RNAi therapeutics market: growing investments in RNAi therapies. BioSpace https://www.biospace.com/article/rnai-therapeutics-market-growing-investments-in-rnai-therapies/ (2021).

  35. Kim, J. et al. Patient-customized oligonucleotide therapy for a rare genetic disease. N. Engl. J. Med. 381, 1644–1652 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. European Medicines Agency recommends first gene therapy for approval. European Medicines Agency https://www.ema.europa.eu/en/news/european-medicines-agency-recommends-first-gene-therapy-approval (2012).

  37. Ribeil, J. A. et al. Gene therapy in a patient with sickle cell disease. N. Engl. J. Med. 376, 848–855 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Esrick, E. B. et al. Post-transcriptional genetic silencing of BCL11A to treat sickle cell disease. N. Engl. J. Med. 384, 205–215 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Thompson, A. A. et al. Gene therapy in patients with transfusion-dependent beta-thalassemia. N. Engl. J. Med. 378, 1479–1493 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Li, H. et al. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct. Target. Ther. 5, 1 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Frangoul, H. et al. CRISPR–Cas9 gene editing for sickle cell disease and beta-thalassemia. N. Engl. J. Med. 384, 252–260 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Dean, M. et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science 273, 1856–1862 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Samson, M. et al. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382, 722–725 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. FDA approves maraviroc tablets. AIDS Patient Care STDs 21, 702 (2007).

  45. Piters, E. et al. First missense mutation in the SOST gene causing sclerosteosis by loss of sclerostin function. Hum. Mutat. 31, E1526–E1543 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Balemans, W. et al. Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J. Med. Genet. 39, 91–97 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Musunuru, K. et al. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N. Engl. J. Med. 363, 2220–2227 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Martin-Campos, J. M. et al. Identification of a novel mutation in the ANGPTL3 gene in two families diagnosed of familial hypobetalipoproteinemia without APOB mutation. Clin. Chim. Acta 413, 552–555 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Romeo, S. et al. Rare loss-of-function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans. J. Clin. Invest. 119, 70–79 (2009).

    CAS  PubMed  Google Scholar 

  50. Mullard, A. FDA approves first anti-ANGPTL3 antibody, for rare cardiovascular indication. Nat. Rev. Drug Discov. 20, 251 (2021).

    PubMed  Google Scholar 

  51. Banerjee, Y. et al. Inclisiran: a small interfering RNA strategy targeting PCSK9 to treat hypercholesterolemia. Expert Opin. Drug Saf. 21, 9–20 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Wang, L. et al. Long-term stable reduction of low-density lipoprotein in nonhuman primates following in vivo genome editing of PCSK9. Mol. Ther. 29, 2019–2029 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Musunuru, K. et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature 593, 429–434 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Reyes-Soffer, G. et al. Lipoprotein(a): a genetically determined, causal, and prevalent risk factor for atherosclerotic cardiovascular disease: a scientific statement from the American Heart Association. Arterioscler. Thromb. Vasc. Biol. 42, e48–e60 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Tsimikas, S. et al. Lipoprotein(a) reduction in persons with cardiovascular disease. N. Engl. J. Med. 382, 244–255 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Yeang, C. et al. Effect of pelacarsen on lipoprotein(a) cholesterol and corrected low-density lipoprotein cholesterol. J. Am. Coll. Cardiol. 79, 1035–1046 (2022).

    Article  CAS  PubMed  Google Scholar 

  57. Koren, M. J. et al. Preclinical development and phase 1 trial of a novel siRNA targeting lipoprotein(a). Nat. Med. 28, 96–103 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Mendonca, B. B. et al. Steroid 5α-reductase 2 deficiency. J. Steroid Biochem. Mol. Biol. 163, 206–211 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Gormley, G. J. et al. The effect of finasteride in men with benign prostatic hyperplasia. The Finasteride Study Group. N. Engl. J. Med. 327, 1185–1191 (1992).

    Article  CAS  PubMed  Google Scholar 

  60. Kaufman, K. D. et al. Finasteride in the treatment of men with androgenetic alopecia. Finasteride Male Pattern Hair Loss Study Group. J. Am. Acad. Dermatol. 39, 578–589 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Rafiq, M. et al. Effective treatment with oral sulfonylureas in patients with diabetes due to sulfonylurea receptor 1 (SUR1) mutations. Diabetes Care 31, 204–209 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Savarirayan, R. et al. Infigratinib in children with achondroplasia: the PROPEL and PROPEL 2 studies. Ther. Adv. Musculoskelet. Dis. 14, 1759720x221084848 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Duerr, R. H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314, 1461–1463 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wellcome Trust Case Control Consortium. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat. Genet. 39, 1329–1337 (2007).

    Article  Google Scholar 

  65. Mokry, L. E. et al. Interleukin-18 as a drug repositioning opportunity for inflammatory bowel disease: a Mendelian randomization study. Sci. Rep. 9, 9386 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  66. Niemi, M. E. K. et al. Mapping the human genetic architecture of COVID-19. Nature 600, 472–477 (2021).

    Article  CAS  Google Scholar 

  67. RECOVERY Collaborative Group. Baricitinib in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial and updated meta-analysis. Lancet 400, 1102 (2022).

    Google Scholar 

  68. Tishkoff, S. A. & Verrelli, B. C. Patterns of human genetic diversity: implications for human evolutionary history and disease. Annu. Rev. Genomics Hum. Genet. 4, 293–340 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Slatkin, M. A population-genetic test of founder effects and implications for Ashkenazi Jewish diseases. Am. J. Hum. Genet. 75, 282–293 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. de la Chapelle, A. Disease gene mapping in isolated human populations: the example of Finland. J. Med. Genet. 30, 857–865 (1993).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kurki, M. I. et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613, 508–518 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Moises, H. W. et al. An international two-stage genome-wide search for schizophrenia susceptibility genes. Nat. Genet. 11, 321–324 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. Spedicati, B. et al. Natural human knockouts and Mendelian disorders: deep phenotyping in Italian isolates. Eur. J. Hum. Genet. 29, 1272–1281 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Baskovich, B. et al. Expanded genetic screening panel for the Ashkenazi Jewish population. Genet. Med. 18, 522–528 (2016).

    Article  PubMed  Google Scholar 

  75. Bherer, C. et al. Admixed ancestry and stratification of Quebec regional populations. Am. J. Phys. Anthropol. 144, 432–441 (2011).

    Article  PubMed  Google Scholar 

  76. Laberge, A. M. et al. Population history and its impact on medical genetics in Quebec. Clin. Genet. 68, 287–301 (2005).

    Article  PubMed  Google Scholar 

  77. Locke, A. E. et al. Exome sequencing of Finnish isolates enhances rare-variant association power. Nature 572, 323–328 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Erzurumluoglu, A. M., Shihab, H. A., Rodriguez, S., Gaunt, T. R. & Day, I. N. Importance of genetic studies in consanguineous populations for the characterization of novel human gene functions. Ann. Hum. Genet. 80, 187–196 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Minikel, E. V. et al. Evaluating drug targets through human loss-of-function genetic variation. Nature 581, 459–464 (2020). This analysis provides a comprehensive roadmap for human knockout studies to discover relevant loss-of-function variants that can guide drug discovery and development.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  80. Saleheen, D. et al. Human knockouts and phenotypic analysis in a cohort with a high rate of consanguinity. Nature 544, 235–239 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lu, T. et al. Individuals with common diseases but with a low polygenic risk score could be prioritized for rare variant screening. Genet. Med. 23, 508–515 (2021).

    Article  CAS  PubMed  Google Scholar 

  82. Wu, H. et al. Polygenic risk score for low-density lipoprotein cholesterol is associated with risk of ischemic heart disease and enriches for individuals with familial hypercholesterolemia. Circ. Genom. Precis. Med. 14, e003106 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  83. Pfizer and Ionis announce discontinuation of vupanorsen clinical development program. CISION https://www.prnewswire.com/news-releases/pfizer-and-ionis-announce-discontinuation-of-vupanorsen-clinical-development-program-301471041.html (2022).

  84. Kingwell, K. Double setback for ASO trials in Huntington disease. Nat. Rev. Drug Discov. 20, 412–413 (2021).

    Article  CAS  PubMed  Google Scholar 

  85. Romeo, S. et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 40, 1461–1465 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yuan, X. et al. Population-based genome-wide association studies reveal six loci influencing plasma levels of liver enzymes. Am. J. Hum. Genet. 83, 520–528 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Davey Smith, G. & Hemani, G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum. Mol. Genet. 23, R89–98 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gill, D. et al. Mendelian randomization for studying the effects of perturbing drug targets. Wellcome Open Res. 6, 16 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Ference, B. A. Mendelian randomization studies: using naturally randomized genetic data to fill evidence gaps. Curr. Opin. Lipidol. 26, 566–571 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Schmidt, A. F. et al. Genetic drug target validation using Mendelian randomisation. Nat. Commun. 11, 3255 (2020). This study provides an analytical framework on how to utilize Mendelian randomization for drug target validation.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zheng, J. et al. Phenome-wide Mendelian randomization mapping the influence of the plasma proteome on complex diseases. Nat. Genet. 52, 1122–1131 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ferkingstad, E. et al. Large-scale integration of the plasma proteome with genetics and disease. Nat. Genet. 53, 1712–1721 (2021). This article depicts in great depth the largest genome-wide association studies of plasma protein levels to date and describes 938 genes encoding potential drug targets with variants that influence levels of protein biomarkers.

    Article  CAS  PubMed  Google Scholar 

  93. Miller, C. L. et al. Integrative functional genomics identifies regulatory mechanisms at coronary artery disease loci. Nat. Commun. 7, 12092 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ganesan, A., Arimondo, P. B., Rots, M. G., Jeronimo, C. & Berdasco, M. The timeline of epigenetic drug discovery: from reality to dreams. Clin. Epigenetics 11, 174 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Steinberg, J. et al. Integrative epigenomics, transcriptomics and proteomics of patient chondrocytes reveal genes and pathways involved in osteoarthritis. Sci. Rep. 7, 8935 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  96. Spreafico, R., Soriaga, L. B., Grosse, J., Virgin, H. W. & Telenti, A. Advances in genomics for drug development. Genes 11, 942 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhou, S. et al. A Neanderthal OAS1 isoform protects individuals of European ancestry against COVID-19 susceptibility and severity. Nat. Med. 27, 659–667 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Yoshiji, S. et al. Proteome-wide Mendelian randomization implicates nephronectin as an actionable mediator of the effect of obesity on COVID-19 severity. Nat. Metab. 5, 248–264 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Carss, K. J. et al. Using human genetics to improve safety assessment of therapeutics. Nat. Rev. Drug Discov. 22, 145–162 (2023). This review discusses how genetics can be used to anticipate potential safety issues associated with a particular drug target and to de-risk clinical development.

    Article  CAS  PubMed  Google Scholar 

  100. Diogo, D. et al. TYK2 protein-coding variants protect against rheumatoid arthritis and autoimmunity, with no evidence of major pleiotropic effects on non-autoimmune complex traits. PLoS ONE 10, e0122271 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Marx, V. The DNA of a nation. Nature 524, 503–505 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  102. 100,000 Genomes Project Pilot Investigators. 100,000 Genomes Pilot on Rare-Disease Diagnosis in Health Care—preliminary report. N. Engl. J. Med. 385, 1868–1880 (2021).

    Article  Google Scholar 

  103. Turnbull, C. Introducing whole-genome sequencing into routine cancer care: the Genomics England 100,000 Genomes Project. Ann. Oncol. 29, 784–787 (2018).

    Article  CAS  PubMed  Google Scholar 

  104. Kousathanas, A. et al. Whole-genome sequencing reveals host factors underlying critical COVID-19. Nature 607, 97–103 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sankar, P. L. & Parker, L. S. The Precision Medicine Initiative’s All of Us research program: an agenda for research on its ethical, legal, and social issues. Genet. Med. 19, 743–750 (2017).

    Article  PubMed  Google Scholar 

  107. Gudbjartsson, D. F. et al. Large-scale whole-genome sequencing of the Icelandic population. Nat. Genet. 47, 435–444 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Sakaue, S. et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat. Genet. 53, 1415–1424 (2021). This study provides an atlas of up to 220 genotype–phenotype associations in non-Europeans that enriches the field with data from diverse populations.

    Article  CAS  PubMed  Google Scholar 

  109. Nagai, A. et al. Overview of the BioBank Japan Project: study design and profile. J. Epidemiol. 27, S2–s8 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Leitsalu, L. et al. Cohort profile: Estonian Biobank of the Estonian Genome Center, University of Tartu. Int. J. Epidemiol. 44, 1137–1147 (2014).

    Article  PubMed  Google Scholar 

  111. Gharahkhani, P. et al. Genome-wide meta-analysis identifies 127 open-angle glaucoma loci with consistent effect across ancestries. Nat. Commun. 12, 1258 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tanigawa, Y. et al. Rare protein-altering variants in ANGPTL7 lower intraocular pressure and protect against glaucoma. PLoS Genet. 16, e1008682 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. & Akbari, P. et al. Sequencing of 640,000 exomes identifies GPR75 variants associated with protection from obesity. Science 373, eab8683 (2021). This publication reports the discovery of loss-of-function variants in GPR75 and protection from obesity.

    Article  Google Scholar 

  114. Regeneron Genetics Center discovers GPR75 gene mutations that protect against obesity. Regeneron https://investor.regeneron.com/news-releases/news-release-details/regeneron-genetics-center-discovers-gpr75-gene-mutations-protect (2021).

  115. Abul-Husn, N. S. et al. A protein-truncating HSD17B13 variant and protection from chronic liver disease. N. Engl. J. Med. 378, 1096–1106 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sirugo, G., Williams, S. M. & Tishkoff, S. A. The missing diversity in human genetic studies. Cell 177, 26–31 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51, 584–591 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ramamoorthy, A., Pacanowski, M. A., Bull, J. & Zhang, L. Racial/ethnic differences in drug disposition and response: review of recently approved drugs. Clin. Pharmacol. Ther. 97, 263–273 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Gurdasani, D., Barroso, I., Zeggini, E. & Sandhu, M. S. Genomics of disease risk in globally diverse populations. Nat. Rev. Genet. 20, 520–535 (2019).

    Article  CAS  PubMed  Google Scholar 

  120. Fatumo, S. et al. A roadmap to increase diversity in genomic studies. Nat. Med. 28, 243–250 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Popejoy, A. B. & Fullerton, S. M. Genomics is failing on diversity. Nature 538, 161–164 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bien, S. A. et al. The future of genomic studies must be globally representative: perspectives from PAGE. Annu. Rev. Genomics Hum. Genet. 20, 181–200 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wonkam, A. Sequence three million genomes across Africa. Nature 590, 209–211 (2021). This commentary discusses the research benefits of analysing Africa’s genetic variation andsets up a framework to sequence three million African genomes.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  124. H3Africa Consortium. Research capacity. Enabling the genomic revolution in Africa. Science 344, 1346–1348 (2014).

    Article  Google Scholar 

  125. Choudhury, A. et al. High-depth African genomes inform human migration and health. Nature 586, 741–748 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wade, K. H. et al. Assessing the causal role of body mass index on cardiovascular health in young adults: Mendelian randomization and recall-by-genotype analyses. Circulation 138, 2187–2201 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Corbin, L. J. et al. Metabolic characterisation of disturbances in the APOC3/triglyceride-rich lipoprotein pathway through sample-based recall by genotype. Metabolomics 16, 69 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hellmich, C. et al. Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants and sleep neurophysiology. BMC Med. Genet. 16, 96 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Alver, M. et al. Recall by genotype and cascade screening for familial hypercholesterolemia in a population-based biobank from Estonia. Genet. Med. 21, 1173–1180 (2019).

    Article  CAS  PubMed  Google Scholar 

  130. Mascalzoni, D. et al. Balancing scientific interests and the rights of participants in designing a recall by genotype study. Eur. J. Hum. Genet. 29, 1146–1157 (2021). This article describes the best practices and policies for recall-by-genotype studies.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Tremblay, K. et al. The Biobanque quebecoise de la COVID-19 (BQC19)-A cohort to prospectively study the clinical and biological determinants of COVID-19 clinical trajectories. PLoS ONE 16, e0245031 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Mooser, V. & Currat, C. The Lausanne Institutional Biobank: a new resource to catalyse research in personalised medicine and pharmaceutical sciences. Swiss Med. Wkly 144, w14033 (2014).

    PubMed  Google Scholar 

  133. Maurer, F. et al. Identification and molecular characterisation of Lausanne Institutional Biobank participants with familial hypercholesterolaemia—a proof-of-concept study. Swiss Med. Wkly 146, w14326 (2016).

    PubMed  Google Scholar 

  134. Bochud, M., Currat, C., Chapatte, L., Roth, C. & Mooser, V. High participation rate among 25,721 patients with broad age range in a hospital-based research project involving whole-genome sequencing—the Lausanne Institutional Biobank. Swiss Med. Wkly 147, w14528 (2017).

    PubMed  Google Scholar 

  135. Mabuchi, H. et al. Effect of an inhibitor of 3-hydroxy-3-methyglutaryl coenzyme A reductase on serum lipoproteins and ubiquinone-10-levels in patients with familial hypercholesterolemia. N. Engl. J. Med. 305, 478–482 (1981).

    Article  CAS  PubMed  Google Scholar 

  136. Ramsey, B. W. et al. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N. Engl. J. Med. 365, 1663–1672 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Mead, S. et al. Clinical trial simulations based on genetic stratification and the natural history of a functional outcome measure in Creutzfeldt–Jakob disease. JAMA Neurol. 73, 447–455 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  139. van Bokhoven, P. et al. The Alzheimer’s disease drug development landscape. Alzheimers Res. Ther. 13, 186 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Lopes Alves, I. et al. Strategies to reduce sample sizes in Alzheimer’s disease primary and secondary prevention trials using longitudinal amyloid PET imaging. Alzheimers Res. Ther. 13, 82 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Fahed, A. C., Philippakis, A. A. & Khera, A. V. The potential of polygenic scores to improve cost and efficiency of clinical trials. Nat. Commun. 13, 2922 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  142. Damask, A. et al. Patients with high genome-wide polygenic risk scores for coronary artery disease may receive greater clinical benefit from alirocumab treatment in the ODYSSEY OUTCOMES trial. Circulation 141, 624–636 (2020).

    Article  PubMed  Google Scholar 

  143. Marston, N. A. et al. Predicting benefit from evolocumab therapy in patients with atherosclerotic disease using a genetic risk score: results from the FOURIER trial. Circulation 141, 616–623 (2020). These two independent articles (refs. 142,143) show that patients with a high polygenic risk score for coronary artery disease benefit most from PCSK9 inhibition, suggesting that the selection of participants based on their genomic profile may be useful in early trials.

    Article  PubMed  Google Scholar 

  144. Roden, D. M. et al. Benefit of preemptive pharmacogenetic information on clinical outcome. Clin. Pharmacol. Ther. 103, 787–794 (2018).

    Article  PubMed  Google Scholar 

  145. Petrović, J., Pešić, V. & Lauschke, V. M. Frequencies of clinically important CYP2C19 and CYP2D6 alleles are graded across Europe. Eur J Hum Genet 28, 88–94 (2020).

    Article  PubMed  Google Scholar 

  146. US Department of Health and Human Services et al. Clinical Pharmacogenomics: Premarket Evaluation in Early-Phase Clinical Studies and Recommendations for Labeling https://www.fda.gov/files/drugs/published/Clinical-Pharmacogenomics--Premarket-Evaluation-in-Early-Phase-Clinical-Studies-and-Recommendations-for-Labeling.pdf (FDA, 2013).

  147. Government Chief Scientific Adviser. Genomics Beyond Health https://www.gov.uk/government/publications/genomics-beyond-health (Government Office for Science, 2022).

Download references

Acknowledgements

The authors thank B. Dalton, P. Gros, H. Hobbs, R. McInnes, D. Roden, R. Touyz and G. Waeber for their careful reading of the manuscript and their advice. This work was supported by the McGill Canada Excellence Research Chair Program in Genomic Medicine.

Author information

Authors and Affiliations

Authors

Contributions

K.T. and V.M. planned and co-wrote the manuscript and conceptualized and designed the figures and tables. C.B., D.T., S.Z. and J.B.R. provided conceptual input and edited and revised the manuscript.

Corresponding author

Correspondence to Vincent Mooser.

Ethics declarations

Competing interests

V.M. has received honoraria from DalGene and shares from MedeLoop. J.B.R. is the founder of 5 Prime Sciences, has served as a consultant to GlaxoSmithKline and Deerfield Capital for their genetics programmes and has received shares from MedeLoop. The other authors declare no competing interests.

Peer review

Peer review information

Nature thanks Edoardo Aromataris, Matthew Nelson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Note

Extended methods including Supplementary Fig. 1.

Supplementary Tables

Supplementary Tables 1–3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trajanoska, K., Bhérer, C., Taliun, D. et al. From target discovery to clinical drug development with human genetics. Nature 620, 737–745 (2023). https://doi.org/10.1038/s41586-023-06388-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06388-8

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research