Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regioselective aliphatic C–H functionalization using frustrated radical pairs

Abstract

Frustrated Lewis pairs (FLPs) are well documented for the activation of small molecules such as dihydrogen and carbon dioxide1,2,3,4. Although canonical FLP chemistry is heterolytic in nature, recent work has shown that certain FLPs can undergo single-electron transfer to afford radical pairs5. Owing to steric encumbrance and/or weak bonding association, these radicals do not annihilate one another, and they have thus been named frustrated radical pairs (FRPs). Notable preliminary results suggest that FRPs may be useful reagents in chemical synthesis6,7,8, although their applications remain limited. Here we demonstrate that the functionalization of C(sp3)–H bonds can be accomplished using a class of FRPs generated from disilazide donors and an N-oxoammonium acceptor. Together, these species undergo single-electron transfer to generate a transient and persistent radical pair capable of cleaving unactivated C–H bonds to furnish aminoxylated products. By tuning the structure of the donor, it is possible to control regioselectivity and tailor reactivity towards tertiary, secondary or primary C–H bonds. Mechanistic studies lend strong support for the formation and involvement of radical pairs in the target reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Background and introduction to FRPs.
Fig. 2: Reaction development.
Fig. 3: Divergent site selectivity via tuning of the HAA in the FRP.
Fig. 4: Mechanistic studies.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information. Should any raw data files be needed in another format they are available from the corresponding author upon reasonable request.

References

  1. Stephan, D. W. Frustrated Lewis pairs. J. Am. Chem. Soc. 137, 10018–10032 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Stephan, D. W. & Erker, G. Frustrated Lewis pair chemistry: development and perspectives. Angew. Chem. Int. Edn 54, 6400–6441 (2015).

  3. Stephan, D. W. The broadening reach of frustrated Lewis pair chemistry. Science 354, aaf7229 (2016).

    Article  PubMed  Google Scholar 

  4. Piers, W. E., Marwitz, A. J. V. & Mercier, L. G. Mechanistic aspects of bond activation with perfluoroarylboranes. Inorg. Chem. 50, 12252–12262 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Dasgupta, A., Richards, E. & Melen, R. L. Frustrated radical pairs: insights from EPR spectroscopy. Angew. Chem. Int. Edn 60, 53–65 (2021).

  6. Ménard, G. et al. C–H bond activation by radical ion pairs derived from R3P/Al(C6F5)3 frustrated Lewis pairs and N2O. J. Am. Chem. Soc. 135, 6446–6449 (2013).

    Article  PubMed  Google Scholar 

  7. Soltani, Y. et al. Radical reactivity of frustrated Lewis pairs with diaryl esters. Cell Rep. Phys. Sci. 1, 100016 (2020).

    Article  Google Scholar 

  8. Aramaki, Y., Imaizumi, N., Hotta, M., Kumagai, J. & Ooi, T. Exploiting single-electron transfer in Lewis pairs for catalytic bond-forming reactions. Chem. Sci. 11, 4305–4311 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hong, B., Luo, T. & Lei, X. Late-stage diversification of natural products. ACS Cent. Sci. 6, 622–635 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hartwig, J. F. Evolution of C–H bond functionalization from methane to methodology. J. Am. Chem. Soc. 138, 2–24 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. White, M. C. & Zhao, J. Aliphatic C–H oxidations for late-stage functionalization. J. Am. Chem. Soc. 140, 13988–14009 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cernak, T., Dykstra, K. D., Tyagarajan, S., Vachal, P. & Krska, S. W. The medicinal chemist’s toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev. 45, 546–576 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Golden, D. L., Suh, S.-E. & Stahl, S. S. Radical C(sp3)–H functionalization and cross-coupling reactions. Nat. Rev. Chem. 6, 405–427 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Newhouse, T. & Baran, P. S. If C–H bonds could talk: selective C–H bond oxidation. Angew. Chem. Int. Edn 50, 3362–3374 (2011).

  15. Hartwig, J. F. & Larsen, M. A. Undirected, homogeneous C–H bond functionalization: challenges and opportunities. ACS Cent. Sci. 2, 281–292 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Carestia, A. M., Ravelli, D. & Alexanian, E. J. Reagent-dictated site selectivity in intermolecular aliphatic C–H functionalizations using nitrogen-centered radicals. Chem. Sci. 9, 5360–5365 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McMillan, A. J. et al. Practical and selective sp3 C−H bond chlorination via aminium radicals. Angew. Chem. Int. Edn 60, 7132–7139 (2021).

  18. Saito, M. et al. N-ammonium ylide mediators for electrochemical C–H oxidation. J. Am. Chem. Soc. 143, 7859–7867 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Davies, H. M. L. & Liao, K. Dirhodium tetracarboxylates as catalysts for selective intermolecular C–H functionalization. Nat. Rev. Chem. 3, 347–360 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chan, H. S. S., Yang, J.-M. & Yu, J.-Q. Catalyst-controlled site-selective methylene C–H lactonization of dicarboxylic acids. Science 376, 1481–1487 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  21. Li, Y.-H., Ouyang, Y., Chekshin, N. & Yu, J.-Q. PdII-catalyzed site-selective β- and γ-C(sp3)-H arylation of primary aldehydes controlled by transient directing groups. J. Am. Chem. Soc. 144, 4727–4733 (2022).

  22. Oeschger, R. et al. Diverse functionalization of strong alkyl C–H bonds by undirected borylation. Science 368, 736–741 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  23. Shu, C., Noble, A. & Aggarwal, V. K. Metal-free photoinduced C(sp3)–H borylation of alkanes. Nature 586, 714–719 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Liao, K. et al. Design of catalysts for site-selective and enantioselective functionalization of non-activated primary C–H bonds. Nat. Chem. 10, 1048–1055 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Geier, S. J., Gille, A. L., Gilbert, T. M. & Stephan, D. W. From classical adducts to frustrated lewis pairs: steric effects in the interactions of pyridines and B(C6F5)3. Inorg. Chem. 48, 10466–10474 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Geier, S. J., Gilbert, T. M. & Stephan, D. W. Activation of H2 by phosphinoboranes R2PB(C6F 5)2. J. Am. Chem. Soc. 130, 12632–12633 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, X. et al. One-electron oxidation of an organic molecule by B(C6F5)3; isolation and structures of stable non-para-substituted triarylamine cation radical and bis(triarylamine) dication diradicaloid. J. Am. Chem. Soc. 135, 14912–14915 (2013).

    Article  PubMed  Google Scholar 

  28. Liu, L. L., Cao, L. L., Shao, Y., Ménard, G. & Stephan, D. W. A radical mechanism for frustrated Lewis pair reactivity. Chem 3, 259–267 (2017).

    Article  CAS  Google Scholar 

  29. Merk, A. et al. Single-electron transfer reactions in frustrated and conventional silylium ion/phosphane Lewis pairs. Angew. Chem. Int. Edn 57, 15267–15271 (2018).

  30. Liu, L. L., Cao, L. L., Zhu, D., Zhou, J. & Stephan, D. W. Homolytic cleavage of peroxide bonds via a single electron transfer of a frustrated Lewis pair. Chem. Commun. 54, 7431–7434 (2018).

    Article  CAS  Google Scholar 

  31. Holtrop, F. et al. Single-electron transfer in frustrated Lewis pair chemistry. Angew. Chem. Int. Edn 59, 22210–22216 (2020).

  32. Holtrop, F. et al. Photoinduced and thermal single-electron transfer to generate radicals from frustrated Lewis pairs. Chem. Eur. J. 26, 9005–9011 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Dasgupta, A. et al. Site-selective Csp3–Csp/Csp3–Csp2 cross-coupling reactions using frustrated Lewis pairs. J. Am. Chem. Soc. 143, 4451–4464 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jiang, H. & Studer, A. Chemistry with N-centered radicals generated by single-electron transfer-oxidation using photoredox catalysis. CCS Chem. 1, 38–49 (2019).

    Article  CAS  Google Scholar 

  35. Kärkäs, M. D. Photochemical generation of nitrogen-centered amidyl, hydrazonyl, and imidyl radicals: methodology developments and catalytic applications. ACS Catal. 7, 4999–5022 (2017).

    Article  Google Scholar 

  36. Brand, J. C., Roberts, B. P. & Winter, J. N. Trialkylsilylaminyl radicals. Part 1. Electron spin resonance studies of the photolysis of silylated hydrazines, hydroxylamines, triazenes, and tetrazenes. J. Chem. Soc. Perkin Trans. 2 1983, 261–270 (1983).

  37. Cook, M. D., Roberts, B. P. & Singh, K. Silylaminyl radicals. Part 2. Free radical chain halogenation of hydrocarbons using N-halogenobis(trialkylsilyl)amines. J. Chem. Soc. Perkin Trans. 2 1983, 635–643 (1983).

  38. Siu, J. C. et al. Electrochemical azidooxygenation of alkenes mediated by a TEMPO–N3 charge-transfer complex. J. Am. Chem. Soc. 140, 12511–12520 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nutting, J. E., Rafiee, M. & Stahl, S. S. Tetramethylpiperidine N-oxyl (TEMPO), phthalimide N-oxyl (PINO), and related N-oxyl species: electrochemical properties and their use in electrocatalytic reactions. Chem. Rev. 118, 4834–4885 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chateauneuf, J., Lusztyk, J. & Ingold, K. U. Absolute rate constants for the reactions of some carbon-centered radicals with 2,2,6,6-tetramethylpiperidine-N-oxyl. J. Org. Chem. 53, 1629–1632 (1988).

    Article  CAS  Google Scholar 

  41. Romero, K. J., Galliher, M. S., Pratt, D. A. & Stephenson, C. R. J. Radicals in natural product synthesis. Chem. Soc. Rev. 47, 7851–7866 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vasilopoulos, A., Krska, S. W. & Stahl, S. S. C(sp3)–H methylation enabled by peroxide photosensitization and Ni-mediated radical coupling. Science 372, 398–403 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  43. Galeotti, M., Salamone, M. & Bietti, M. Electronic control over site-selectivity in hydrogen atom transfer (HAT) based C(sp3)–H functionalization promoted by electrophilic reagents. Chem. Soc. Rev. 51, 2171–2223 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Schämann, M. & Schäfer, H. J. Alkoxyamines by reaction of 2,2,6,6-tetramethylpiperidine-1-oxoammonium tetrafluoroborate with enolates. Synlett 2004, 1601–1603 (2004).

    Google Scholar 

  45. Zhang, B. & Studer, A. Stereoselective radical azidooxygenation of alkenes. Org. Lett. 15, 4548–4551 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Zhu, Q., Gentry, E. C. & Knowles, R. R. Catalytic carbocation generation enabled by the mesolytic cleavage of alkoxyamine radical cations. Angew. Chem. Int. Edn 55, 9969–9973 (2016).

  47. Kielty, P., Farràs, P., Smith, D. A. & Aldabbagh, F. 2-(Fluoromethyl)-4,7-dimethoxy-1-methyl-1H-benzimidazole. MolBank 2020, M1129 (2020).

    Article  Google Scholar 

  48. Studer, A. Tin-free radical chemistry using the persistent radical effect: alkoxyamine isomerization, addition reactions and polymerizations. Chem. Soc. Rev. 33, 267–273 (2004).

    Article  CAS  PubMed  ADS  Google Scholar 

  49. Norcott, P. L. et al. TEMPO-Me: an electrochemically activated methylating agent. J. Am. Chem. Soc. 141, 15450–15455 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Nelson, H. M. et al. Isolation and X-ray crystal structure of an electrogenerated TEMPO–N3 charge-transfer complex. Org. Lett. 23, 454–458 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the National Institutes of Health (R01GM134088 to S.L. and F32GM142264 to M.J.) and Genentech. We thank R. Mandel for assisting in setting up reactions with high-pressure ethane; I. Keresztes for his help in structural elucidation of complex products; J. H. Freed and A. L. Lai for their help in EPR experiments; D. B. Collum, Y. Ma and R. Woltornist for suggestions on synthesis of lithium disilazides; P. Yu for reproducing experiments; and D. Stephan for discussion. We thank the Advanced Electron-Spin Resonance Spectroscopy (ACERT) centre (NIH grant number 1R24GM146107) for providing EPR facilities.

Author information

Authors and Affiliations

Authors

Contributions

S.L. supervised the project. Z.L., M.J. and S.L. conceived the work. Z.L. and M.J. designed the experiments. Z.L., M.J., J.M.M. and J.I.M.A. conducted synthetic experiments and mechanistic studies. Y.W. conducted DFT calculations. E.V. and J.A.T. provided guidance on the project. Z.L., M.J. and S.L. wrote the paper. J.M.M., J.I.M.A., Y.W., E.V. and J.A.T. assisted in writing and editing the paper.

Corresponding author

Correspondence to Song Lin.

Ethics declarations

Competing interests

A US provisional patent (no. 63/369,353) was filed on the reaction method.

Peer review

Peer review information

Nature thanks Rebecca Melen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Z., Ju, M., Wang, Y. et al. Regioselective aliphatic C–H functionalization using frustrated radical pairs. Nature 619, 514–520 (2023). https://doi.org/10.1038/s41586-023-06131-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06131-3

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing