Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Attosecond electron microscopy of sub-cycle optical dynamics

Abstract

The primary step of almost any interaction between light and materials is the electrodynamic response of the electrons to the optical cycles of the impinging light wave on sub-wavelength and sub-cycle dimensions1. Understanding and controlling the electromagnetic responses of a material2,3,4,5,6,7,8,9,10,11 is therefore essential for modern optics and nanophotonics12,13,14,15,16,17,18,19. Although the small de Broglie wavelength of electron beams should allow access to attosecond and ångström dimensions20, the time resolution of ultrafast electron microscopy21 and diffraction22 has so far been limited to the femtosecond domain16,17,18, which is insufficient for recording fundamental material responses on the scale of the cycles of light1,2,10. Here we advance transmission electron microscopy to attosecond time resolution of optical responses within one cycle of excitation light23. We apply a continuous-wave laser24 to modulate the electron wave function into a rapid sequence of electron pulses, and use an energy filter to resolve electromagnetic near-fields in and around a material as a movie in space and time. Experiments on nanostructured needle tips, dielectric resonators and metamaterial antennas reveal a directional launch of chiral surface waves, a delay between dipole and quadrupole dynamics, a subluminal buried waveguide field and a symmetry-broken multi-antenna response. These results signify the value of combining electron microscopy and attosecond laser science to understand light–matter interactions in terms of their fundamental dimensions in space and time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Attosecond field-cycle-contrast electron microscopy.
Fig. 2: Visualization of chiral field-cycle dynamics in a slit-modified needle tip.
Fig. 3: Dynamics of the electric field in a dielectric nanoresonator.
Fig. 4: Time-resolved dynamics of a nanophotonic meta-atom.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available from the corresponding authors upon request.

References

  1. Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    Article  ADS  Google Scholar 

  2. Kienberger, R. et al. Steering attosecond electron wave packets with light. Science 297, 1144–1148 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Khorasaninejad, M. & Capasso, F. Metalenses: versatile multifunctional photonic components. Science 358, eaam8100 (2017).

    Article  PubMed  Google Scholar 

  4. Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Shaltout, A. M., Shalaev, V. M. & Brongersma, M. L. Spatiotemporal light control with active metasurfaces. Science 364, eaat3100 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Grinblat, G. Nonlinear dielectric nanoantennas and metasurfaces: frequency conversion and wavefront control. ACS Photonics 8, 3406–3432 (2021).

    Article  CAS  Google Scholar 

  7. Yuan, G. H. & Zheludev, N. I. Detecting nanometric displacements with optical ruler metrology. Science 364, 771–775 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Deng, S. et al. Ultranarrow plasmon resonances from annealed nanoparticle lattices. Proc. Natl Acad. Sci. USA 117, 23380–23384 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Davis, T. J. et al. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution. Science 368, eaba6415 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Ludwig, M. et al. Sub-femtosecond electron transport in a nanoscale gap. Nat. Phys. 16, 341–345 (2020).

    Article  CAS  Google Scholar 

  11. Müller, M., Paarmann, A. & Ernstorfer, R. Femtosecond electrons probing currents and atomic structure in nanomaterials. Nat. Commun. 5, 5292 (2014).

    Article  ADS  PubMed  Google Scholar 

  12. Joo, W.-J. et al. Metasurface-driven OLED displays beyond 10,000 pixels per inch. Science 370, 459–463 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Li, Z. et al. Meta-optics achieves RGB-achromatic focusing for virtual reality. Sci. Adv. 7, eabe4458 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, L.-M. & Petek, H. Focusing surface plasmon polariton wave packets in space and time. Laser Photonics Rev. 7, 1003–1009 (2013).

    Article  ADS  CAS  Google Scholar 

  15. Groß, P. et al. Plasmonic nanofocusing – grey holes for light. Adv. Phys. X 1, 297–330 (2016).

    Google Scholar 

  16. Barwick, B., Flannigan, D. J. & Zewail, A. H. Photon-induced near-field electron microscopy. Nature 462, 902–906 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Madan, I. et al. Holographic imaging of electromagnetic fields via electron-light quantum interference. Sci. Adv. 5, eaav8358 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kurman, Y. et al. Spatiotemporal imaging of 2D polariton wave packet dynamics using free electrons. Science 372, 1181–1186 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. le Feber, B., Rotenberg, N., Beggs, D. M. & Kuipers, L. Simultaneous measurement of nanoscale electric and magnetic optical fields. Nat. Photonics 8, 43–46 (2014).

    Article  ADS  CAS  Google Scholar 

  20. Baum, P. & Krausz, F. Capturing atomic-scale carrier dynamics with electrons. Chem. Phys. Lett. 683, 57–61 (2017).

    Article  ADS  CAS  Google Scholar 

  21. Zewail, A. H. Four-dimensional electron microscopy. Science 328, 187–193 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Miller, R. J. D. Femtosecond crystallography with ultrabright electrons and X-rays: capturing chemistry in action. Science 343, 1108–1116 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Ryabov, A., Thurner, J. W., Nabben, D., Tsarev, M. V. & Baum, P. Attosecond metrology in a continuous-beam transmission electron microscope. Sci. Adv. 6, eabb1393 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tsarev, M. V., Ryabov, A. & Baum, P. Free-electron qubits and maximum-contrast attosecond pulses via temporal Talbot revivals. Phys. Rev. Res. 3, 043033 (2021).

    Article  CAS  Google Scholar 

  26. Feist, A. et al. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope. Nature 521, 200–203 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Vanacore, G. M. et al. Ultrafast generation and control of an electron vortex beam via chiral plasmonic near fields. Nat. Mater. 18, 573–579 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Harvey, T. R. et al. Probing chirality with inelastic electron-light scattering. Nano Lett. 20, 4377–4383 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Ayuso, D., Ordonez, A. F., Decleva, P., Ivanov, M. & Smirnova, O. Enantio-sensitive unidirectional light bending. Nat. Commun. 12, 3951 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Collins, J. T. et al. Chirality and chiroptical effects in metal nanostructures: fundamentals and current trends. Adv. Opt. Mater. 5, 1700182 (2017).

    Article  ADS  Google Scholar 

  31. Lee, D. Y. et al. Adaptive tip-enhanced nano-spectroscopy. Nat. Commun. 12, 3465 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kuzyk, A. et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483, 311–314 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Ehberger, D., Ryabov, A. & Baum, P. Tilted electron pulses. Phys. Rev. Lett. 121, 094801 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Ryabov, A. & Baum, P. Electron microscopy of electromagnetic waveforms. Science 353, 374–377 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Morimoto, Y. & Baum, P. Single-cycle optical control of beam electrons. Phys. Rev. Lett. 125, 193202 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Hassan, M. T., Liu, H., Baskin, J. S. & Zewail, A. H. Photon gating in four-dimensional ultrafast electron microscopy. Proc. Natl Acad. Sci. USA 112, 12944–12949 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kozák, M. All-optical scheme for generation of isolated attosecond electron pulses. Phys. Rev. Lett. 123, 203202 (2019).

    Article  ADS  PubMed  Google Scholar 

  38. Gao, W. et al. Real-space charge-density imaging with sub-ångström resolution by four-dimensional electron microscopy. Nature 575, 480–484 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207–216 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Peller, D. et al. Sub-cycle atomic-scale forces coherently control a single-molecule switch. Nature 585, 58–62 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Feist, A. et al. Cavity-mediated electron-photon pairs. Science 377, 777–780 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Weninger, C. & Baum, P. Temporal distortions in magnetic lenses. Ultramicroscopy 113, 145–151 (2012).

    Article  CAS  Google Scholar 

  43. Kreier, D., Sabonis, D. & Baum, P. Alignment of magnetic solenoid lenses for minimizing temporal distortions. J. Opt. 16, 075201 (2014).

    Article  ADS  Google Scholar 

  44. Mairesse, Y. & Quéré, F. Frequency-resolved optical gating for complete reconstruction of attosecond bursts. Phys. Rev. A 71, 011401 (2005).

    Article  ADS  Google Scholar 

  45. Priebe, K. E. et al. Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy. Nat. Photonics 11, 793–797 (2017).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  46. Morimoto, Y. & Baum, P. Diffraction and microscopy with attosecond electron pulse trains. Nat. Phys. 14, 252–256 (2018).

    Article  CAS  Google Scholar 

  47. Baum, P. & Zewail, A. H. Attosecond electron pulses for 4D diffraction and microscopy. Proc. Natl Acad. Sci. USA 104, 18409–18414 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Park, S. T. & Zewail, A. H. Photon-induced near-field electron microscopy: mathematical formulation of the relation between the experimental observables and the optically driven charge density of nanoparticles. Phys. Rev. A 89, 013851 (2014).

    Article  ADS  Google Scholar 

  49. Werner, W. S. M., Glantschnig, K. & Ambrosch-Draxl, C. Optical constants and inelastic electron-scattering data for 17 elemental metals. J. Phys. Chem. Ref. Data 38, 1013–1092 (2009).

    Article  ADS  CAS  Google Scholar 

  50. Weaver, J. H., Olson, C. G. & Lynch, D. W. Optical properties of crystalline tungsten. Phys. Rev. B 12, 1293–1297 (1975).

    Article  ADS  CAS  Google Scholar 

  51. Morimoto, Y. & Baum, P. Attosecond control of electron beams at dielectric and absorbing membranes. Phys. Rev. A 97, 033815 (2018).

    Article  ADS  CAS  Google Scholar 

  52. Rakić, A. D., Djurišić, A. B., Elazar, J. M. & Majewski, M. L. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37, 5271–5283 (1998).

    Article  ADS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the German Research Foundation (DFG) through SFB 1432, by the Vector foundation and by the Dr K. H. Eberle Foundation. We thank A. Bähring for help with membrane preparation.

Author information

Authors and Affiliations

Authors

Contributions

P.B. conceived the experiment. L.S., D.N., J.K. and A.R. prepared the nanostructured materials. A.R., D.N. and J.K. constructed the experiment. D.N., J.K. and A.R. obtained data and made analyses. J.K. and L.S. performed numerical calculations. All authors wrote the paper.

Corresponding authors

Correspondence to Andrey Ryabov or Peter Baum.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Kangpeng Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Numerical simulations of light-cycle contrast on a tungsten needle.

Simulated electron energy changes on a tungsten nanotip for varying times within one optical cycle of the exciting laser wave. The dimensions of the needle correspond to the experiment of Fig. 1.

Extended Data Fig. 2 Numerical simulation for explanation of phase velocities and chiral sensitivity.

a, Simulated field-cycle-contrast images for laser incidence from the upper/right direction for explaining the measured super-luminal phase velocities of Fig. 2. b, Simulated field-cycle-contrast images for laser incidence from the upper/left direction. c, Simulated field-cycle contrast as a function of time. d, Time-frozen electric field component Ez around the needle (black circle) in right-handed light. In contrast to Fig. 2f, the laser impinges now from a slanted direction (k-vector in the xz-plane in the coordinates of Fig. 1f). Black arrows, rotation of the field cycles when time proceeds. Pink, purple, trajectories to the left or to the right of the tip. The left part (pink) counter-propagates with the field while the right part (purple) can surf. e, Simulated g-factor changes on the left side (pink) and on the right side (purple) as a function of the propagation time. The results are almost identical to the data of Fig. 2f. The slanted incidence of the laser in the experiment of Fig. 2 is therefore not relevant for the appearance of chirality in our attosecond electron microscopy.

Extended Data Fig. 3 Numerical simulations of light-cycle contrast in a dielectric nanoresonator.

Simulated electron energy changes as a function of space and time within half a cycle of the excitation field. The black dashed lines highlight the propagating wave front of the buried field cycles. The black arrows indicate the field direction and highlight a dipolar and quadrupolar mode at different times. The slit dimensions and membrane properties correspond to the experiment of Fig. 3.

Extended Data Fig. 4 Numerical simulations of the time-resolved dynamics of a nanophotonic meta-atom.

a, Amplitude map of the simulated field oscillations. The slit dimensions and positions correspond to the experiment of Fig. 4. The pattern resembles the experimental data but with shifted interference positions (grey circle). b, Simulated time traces (blue) of the field oscillations at selected interference maxima (1–4). For comparison, the measured time traces from Fig. 4 are reproduced (black). While delays 3 and 4 correspond well to the experiment, delays 1 and 2 show discrepancies, potentially originating from nonplanar surface effects, roughness of the structure, modified refractive indices around the slits, wedged slit walls or related effects.

Extended Data Fig. 5 Comparison of the practical signal strengths in continuous and attosecond electron microscopy regimes.

a, Image of a needle with a continuous beam of electrons at an exposure time of 0.5 s. b, Same image acquired with our attosecond electron pulses at double the exposure time, 1 s. c, Energy-filtered image changes at a spectral cutoff energy of ~1 eV at a chosen time delay. Exposure time, 5 s; scale bar, 100 nm.

Extended Data Fig. 6 Optimum attosecond contrast.

a, Typical laser-modulated electron energy spectrum with sideband peaks at multiples of the photon energy ħω, where \(\omega =2\pi c/\lambda \). The grey area denotes the energy filtering in the experiment. The filter rejects electron with ΔE < Ecut and only transmits electrons with ΔE > Ecut (white area). b, Measured field-cycle contrast as a function of the upper energy slit position Ecut in the energy filter. Neither a too low cutoff (<0.4 eV) nor a too large cutoff (>2 eV) produce a useful contrast. The dashed line indicates the photon energy. ce, Examples of energy-filtered images at Δt = 0.6 fs for different cutoff energies of Ecut = 1.85 eV, Ecut = 1.05 eV and Ecut = 0.25 eV, respectively. Note the changes of signal strength and background noise. Scale bar, 500 nm.

Extended Data Fig. 7 Mode strengths of the singular value decomposition from the dataset of Fig. 3.

The first and the second mode are the quadrupole and the dipole while higher-order modes >2 are associated with noise.

Supplementary information

Supplementary Video 1

Field dynamics of a plasmonic needle. Electric near fields as a function of time; see also Fig. 1g.

Supplementary Video 2

Chiral fields around a slit-modified tip. Electric near fields as a function of time; see also Fig. 2b.

Supplementary Video 3

Resonator modes of a dielectric nanoslit. Electric near fields as a function of time; see also Fig. 3b.

Supplementary Video 4

Interference around multi-slit metastructure. Time-resolved electric near fields; see also Fig. 4a.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nabben, D., Kuttruff, J., Stolz, L. et al. Attosecond electron microscopy of sub-cycle optical dynamics. Nature 619, 63–67 (2023). https://doi.org/10.1038/s41586-023-06074-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06074-9

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing