Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Improving interface quality for 1-cm2 all-perovskite tandem solar cells


All-perovskite tandem solar cells provide high power conversion efficiency at a low cost1,2,3,4. Rapid efficiency improvement in small-area (<0.1 cm2) tandem solar cells has been primarily driven by advances in low-bandgap (approximately 1.25 eV) perovskite bottom subcells5,6,7. However, unsolved issues remain for wide-bandgap (> 1.75 eV) perovskite top subcells8, which at present have large voltage and fill factor losses, particularly for large-area (>1 cm2) tandem solar cells. Here we develop a self-assembled monolayer of (4-(7H-dibenzo[c,g]carbazol-7-yl)butyl)phosphonic acid as a hole-selective layer for wide-bandgap perovskite solar cells, which facilitates subsequent growth of high-quality wide-bandgap perovskite over a large area with suppressed interfacial non-radiative recombination, enabling efficient hole extraction. By integrating (4-(7H-dibenzo[c,g]carbazol-7-yl)butyl)phosphonic acid in devices, we demonstrate a high open-circuit voltage (VOC) of 1.31 V in a 1.77-eV perovskite solar cell, corresponding to a very low VOC deficit of 0.46 V (with respect to the bandgap). With these wide-bandgap perovskite subcells, we report 27.0% (26.4% certified stabilized) monolithic all-perovskite tandem solar cells with an aperture area of 1.044 cm2. The certified tandem cell shows an outstanding combination of a high VOC of 2.12 V and a fill factor of 82.6%. Our demonstration of the large-area tandem solar cells with high certified efficiency is a key step towards scaling up all-perovskite tandem photovoltaic technology.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Material properties and schematic of interconnection between ITO, HTLs and PVSK.
Fig. 2: Characterizations of HTLs on ITO and PVSK films deposited on different HTLs.
Fig. 3: Photovoltaic performance and characterizations of complete WBG devices with different HTLs.
Fig. 4: Photovoltaic performance and characterizations of complete all-PVSK TSCs with different HTLs.

Data availability

All data are available in the paper or Supplementary Information. The data that support the findings of this study are available from the corresponding authors on reasonable request.

Code availability

The codes that support the findings of this study are available from the corresponding authors on reasonable request.


  1. Eperon, G. E., Hörantner, M. T. & Snaith, H. J. Metal halide perovskite tandem and multiple-junction photovoltaics. Nat. Rev. Chem. 1, 0095 (2017).

    Article  CAS  Google Scholar 

  2. Rajagopal, A. et al. Highly efficient perovskite–perovskite tandem solar cells reaching 80% of the theoretical limit in photovoltage. Adv. Mater. 29, 1702140 (2017).

    Article  Google Scholar 

  3. Leijtens, T., Bush, K. A., Prasanna, R. & McGehee, M. D. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 3, 828–838 (2018).

    Article  ADS  CAS  Google Scholar 

  4. Forgács, D. et al. Efficient monolithic perovskite/perovskite tandem solar cells. Adv. Energy Mater. 7, 1602121 (2017).

    Article  ADS  Google Scholar 

  5. Tong, J. et al. Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science 364, 475–479 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Zhao, D. et al. Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nat. Energy 3, 1093–1100 (2018).

    Article  ADS  CAS  Google Scholar 

  7. Lin, R. et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature 603, 73–78 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Thiesbrummel, J. et al. Understanding and minimizing VOC losses in all-perovskite tandem photovoltaics. Adv. Energy Mater. 13, 2202674 (2022).

    Article  Google Scholar 

  9. Eperon, G. E. et al. Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science 354, 861–865 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Jiang, F. et al. A two-terminal perovskite/perovskite tandem solar cell. J. Mater. Chem. A 4, 1208–1213 (2016).

    Article  CAS  Google Scholar 

  11. He, R. et al. Wide-bandgap organic-inorganic hybrid and all-inorganic perovskite solar cells and their application in all-perovskite tandem solar cells. Energy Environ. Sci. 14, 5723–5759 (2021).

    Article  CAS  Google Scholar 

  12. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    Article  ADS  CAS  Google Scholar 

  13. Zhao, D. & Ding, L. All-perovskite tandem structures shed light on thin-film photovoltaics. Sci. Bull. 65, 1144–1146 (2020).

    Article  CAS  Google Scholar 

  14. Green, M. A. et al. Solar cell efficiency tables (version 60). Prog. Photovolt. 30, 687–701 (2022).

    Article  Google Scholar 

  15. Brinkmann, K. O. et al. Perovskite–organic tandem solar cells with indium oxide interconnect. Nature 604, 280–286 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Mahesh, S. et al. Revealing the origin of voltage loss in mixed-halide perovskite solar cells. Energy Environ. Sci. 13, 258–267 (2020).

    Article  MathSciNet  CAS  Google Scholar 

  17. Tan, H. et al. Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites. Nat. Commun. 9, 3100 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  18. McMeekin, D. P. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Fu, F. et al. High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration. Nat. Energy 2, 16190 (2016).

    Article  ADS  Google Scholar 

  20. Liu, Y., Dong, B., Hagfeldt, A., Luo, J. & Graetzel, M. Chemically tailored molecular surface modifiers for efficient and stable perovskite photovoltaics. SmartMat 2, 33–37 (2021).

    Article  CAS  Google Scholar 

  21. Yu, Z. et al. Simplified interconnection structure based on C60/SnO2-x for all-perovskite tandem solar cells. Nat. Energy 5, 657–665 (2020).

    Article  ADS  CAS  Google Scholar 

  22. Li, C. et al. Low-bandgap mixed tin–lead iodide perovskites with reduced methylammonium for simultaneous enhancement of solar cell efficiency and stability. Nat. Energy 5, 768–776 (2020).

    Article  ADS  CAS  Google Scholar 

  23. Xiao, K. et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat. Energy 5, 870–880 (2020).

    Article  ADS  Google Scholar 

  24. Bi, C., Yuan, Y., Fang, Y. & Huang, J. Low-temperature fabrication of efficient wide-bandgap organolead trihalide perovskite solar cells. Adv. Energy Mater. 5, 1401616 (2015).

    Article  Google Scholar 

  25. Hu, M., Bi, C., Yuan, Y., Bai, Y. & Huang, J. Stabilized wide bandgap MAPbBrxI3-x perovskite by enhanced grain size and improved crystallinity. Adv. Sci. 3, 1500301 (2016).

    Article  Google Scholar 

  26. Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Li, L. et al. Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nat. Energy 7, 708–717 (2022).

    Article  CAS  Google Scholar 

  28. Lai, H. et al. High-performance flexible all-perovskite tandem solar cells with reduced VOC-deficit in wide-bandgap subcell. Adv. Energy Mater. 12, 2202438 (2022).

    Article  CAS  Google Scholar 

  29. Stolterfoht, M. et al. Approaching the fill factor Shockley–Queisser limit in stable, dopant-free triple cation perovskite solar cells. Energy Environ. Sci. 10, 1530–1539 (2017).

    Article  CAS  Google Scholar 

  30. Ullah, A. et al. Novel phenothiazine-based self-assembled monolayer as a hole selective contact for highly efficient and stable p-i-n perovskite solar cells. Adv. Energy Mater. 12, 2103175 (2022).

    Article  CAS  Google Scholar 

  31. Kapil, G. et al. Tin–lead perovskite solar cells fabricated on hole selective monolayers. ACS Energy Lett. 7, 966–974 (2022).

    Article  ADS  CAS  Google Scholar 

  32. Du, F. et al. An unfused-ring acceptor with high side-chain economy enabling 11.17% as-cast organic solar cells. Mater. Horiz. 8, 1008–1016 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Zhao, S. et al. Cross-plane transport in a single-molecule two-dimensional van der Waals heterojunction. Sci. Adv. 6, eaba6714 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, J. et al. Aza[5]helicene rivals N-annulated perylene as π-linker of D−π−D typed hole-transporters for perovskite solar cells. Adv. Funct. Mater. 30, 2002114 (2020).

    Article  CAS  Google Scholar 

  35. Chen, B., Rudd, P. N., Yang, S., Yuan, Y. & Huang, J. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48, 3842–3867 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Lin, H.-C. et al. Influence of molecular orientation on charge-transfer processes at phthalocyanine/metal oxide interfaces and relationship to organic photovoltaic performance. J. Phys. Chem. C 119, 10304–10313 (2015).

    Article  ADS  CAS  Google Scholar 

  37. Levine, I. et al. Charge transfer rates and electron trapping at buried interfaces of perovskite solar cells. Joule 5, 2915–2933 (2021).

    Article  CAS  Google Scholar 

  38. Stolterfoht, M. et al. Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. Nat. Energy 3, 847–854 (2018).

    Article  ADS  CAS  Google Scholar 

  39. Caprioglio, P. et al. On the relation between the open-circuit voltage and quasi‐fermi level splitting in efficient perovskite solar cells. Adv. Energy Mater. 9, 1901631 (2019).

    Article  Google Scholar 

  40. Nayak, P. K., Mahesh, S., Snaith, H. J. & Cahen, D. Photovoltaic solar cell technologies: analysing the state of the art. Nat. Rev. Mater. 4, 269–285 (2019).

    Article  ADS  CAS  Google Scholar 

  41. Jiang, Y. et al. Mitigation of vacuum and illumination-induced degradation in perovskite solar cells by structure engineering. Joule 4, 1087–1103 (2020).

    Article  CAS  Google Scholar 

  42. Philippa, B. et al. The impact of hot charge carrier mobility on photocurrent losses in polymer-based solar cells. Sci. Rep. 4, 5695 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Le Corre, V. M. et al. Quantification of efficiency losses due to mobile ions in perovskite solar cells via fast hysteresis measurements. Sol. RRL 6, 2100772 (2022).

    Article  Google Scholar 

  44. Chen, C. et al. Interfacial engineering of a thiophene-based 2D/3D perovskite heterojunction for efficient and stable inverted wide-bandgap perovskite solar cells. Nano Energy 90, 106608 (2021).

    Article  CAS  Google Scholar 

  45. Martínez, L., Andrade, R., Birgin, E. G. & Martínez, J. M. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009).

    Article  PubMed  Google Scholar 

  46. Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).

    Article  CAS  Google Scholar 

  47. Lorenzoni, A., Mosca Conte, A., Pecchia, A. & Mercuri, F. Nanoscale morphology and electronic coupling at the interface between indium tin oxide and organic molecular materials. Nanoscale 10, 9376–9385 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  ADS  CAS  MATH  Google Scholar 

  49. Wei, K. et al. Facile exfoliation of the perovskite thin film for visualizing the buried interfaces in perovskite solar cells. ACS Appl. Energy Mater. 5, 7458–7465 (2022).

    Article  CAS  Google Scholar 

Download references


This work was financially supported by the National Key Research and Development Program of China (no. 2019YFE0120000), the National Natural Science Foundation of China (nos. 62174112, 62005188 and 21875111), the Fundamental Research Funds for the Central Universities (nos. YJ201955 and YJ2021157), the Science and Technology Program of Sichuan Province (no. 2020JDJQ0030), the Engineering Featured Team Fund of Sichuan University (2020SCUNG102), the Research Funds from Tan Kah Kee Innovation Laboratory (HRTP-[2022]-45), the Key R&D Program of Natural Science Foundation of Jiangsu Province (BE2019733), the Natural Science Foundation of Jiangsu Province (BK20190825), open foundation of State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi University (grant no. 2022GXYSOF05) and Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University (no. KJS1909). F.F. acknowledges funding from the Swiss National Science Foundation (no. 200021_213073/1) and European Union’s Horizon Europe research and innovation programme under grant agreement no. 101075605. We acknowledge funding from the Deutsche Forschungsgemeinschaft in the SPP 2196 (HIPSTER 424709669 and SURPRISE 423749265). M.S. further acknowledges the Heisenberg programme from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) for funding (project no. 498155101). F.L. acknowledges funding by the Volkswagen Foundation through the Freigeist Program. We also acknowledge Jihua Zou for measuring confocal PL mapping of WBG perovskites.

Author information

Authors and Affiliations



D.Z., F.F., W.T. and C.C. conceived and designed the research. R.H. carried out the fabrication and main characterizations of WBG PVSK films and devices. W.W., J. Zhou. and W.T. synthesized the SAMs and provided the relevant characterizations of SAMs. R.H., Z.Y., Y.L., J.L. and J. Zhu fabricated all-PVSK tandem devices. J.L. and J. Zhu helped to optimize the LBG devices. F.L., J.T., S.S. and M.S. performed the RPV measurements, the fast hysteresis measurements, the PLQY and electroluminescence-related characterizations and constructed the p-JV of WBG PSCs and TSCs. C.W. performed EQE measurements. H.L. and F.F. carried out TPV and EIS measurements. H.H. and B.Z. performed PiFM measurements. X.Y. synthesized the molecule 2-thiopheneethylammonium chloride. M.S. performed numerical simulations of WBG PVSKs and helped to analyse the results. K.W. and Jinbao Zhang performed the exfoliation of WBG PVSK and characterized the photoluminescence mapping and SEM of the buried interface. R.H., C.C., F.F. and D.Z. wrote the manuscript with inputs from all co-authors. All authors discussed the results and reviewed the manuscript. D.Z. directed this project.

Corresponding authors

Correspondence to Cong Chen, Fan Fu, Weihua Tang or Dewei Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Anita Ho-Baillie, Lijun Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Figs. 1–29, Supplementary Notes 1–2, Supplementary Discussion 1–3, Supplementary Tables 1–7 and Supplementary References.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, R., Wang, W., Yi, Z. et al. Improving interface quality for 1-cm2 all-perovskite tandem solar cells. Nature (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing