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            Abstract
The segmented body plan of vertebrates is established during somitogenesis, a well-studied process in model organisms; however, the details of this process in humans remain largely unknown owing to ethical and technical limitations. Despite recent advances with pluripotent stem cell-based approaches1,2,3,4,5, models that robustly recapitulate human somitogenesis in both space and time remain scarce. Here we introduce a pluripotent stem cell-derived mesoderm-based 3D model of human segmentation and somitogenesisâ€”which we termed â€˜axioloidâ€™â€”that captures accurately the oscillatory dynamics of the segmentation clock and the morphological and molecular characteristics of sequential somite formation in vitro. Axioloids show proper rostrocaudal patterning of forming segments and robust anteriorâ€“posterior FGFâ€“WNT signalling gradients and retinoic acid signalling components. We identify an unexpected critical role of retinoic acid signalling in the stabilization of forming segments, indicating distinct, but also synergistic effects of retinoic acid and extracellular matrix on the formation and epithelialization of somites. Comparative analysis demonstrates marked similarities of axioloids to the human embryo, further validated by the presence of a Hox code in axioloids. Finally, we demonstrate the utility of axioloids for studying the pathogenesis of human congenital spine diseases using induced pluripotent stem cells withÂ mutations in HES7 and MESP2. Our results indicate that axioloids represent a promising platform for the study of axial development and disease in humans.




            
                
                    

    
        
            
                
                Access through your institution
            
        

        
            
                
                    Buy or subscribe
                
            

        
    



                
            


            
                
                    
                

            

            
                
                
                
                
                    
                        This is a preview of subscription content, access via your institution

                    

                    
                

                

                Access options

                


                
                    
                        
                            

    
        
            
                
                Access through your institution
            
        

        
    



                        

                        

    
        
        

        
        
            
                
                Access through your institution
            
        

        
            
                Change institution
            
        

        
        
            
                Buy or subscribe
            
        

        
    



                    
                

                
    
    Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 /Â 30Â days
cancel any time

Learn more


Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue

Learn more


Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Learn more


Prices may be subject to local taxes which are calculated during checkout



  

    
    
        
    Additional access options:

    	
            Log in
        
	
            Learn about institutional subscriptions
        
	
            Read our FAQs
        
	
            Contact customer support
        



    

                
                    Fig. 1: Generation of axioloids from human pluripotent stem cells.[image: ]


Fig. 2: scRNA-seq characterization of human axioloids.[image: ]


Fig. 3: Signalling pathways and the effect of Matrigel on axioloids.[image: ]


Fig. 4: Effect of RA signalling on axioloid morphogenesis.[image: ]


Fig. 5: Molecular comparison of axioloids with human embryos.[image: ]


Fig. 6: Molecular and functional characterization of an axioloid model of SDV.[image: ]
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Extended data figures and tables

Extended Data Fig. 1 Morphological and molecular characterization of human axioloids.
aâ€“c, Bright field images of a, elongating axioloids at 24Â h, 48Â h, and 72Â h, followed by images of axioloids after MG embedding at 96Â h and 120Â h or b,c, without MG embedding in axioloids derived from 409B2 or 201B7 Luc respectively. d, Representative bright field images reflecting the different morphology-based categories (Cat#1: straight, minimal curvature, clear segments; Cat#2: curved but clear segments; Cat#3: very curved, segment borders are still distinguishable; Cat#4: not properly elongated or completely collapsed; segment borders not clear) of 409B2-derived MG embedded axioloids at 96Â h and 120Â h (3Â independent experiments, nâ€‰=â€‰128 axioloids, mean Â±SD). e, Serial images of a forming axioloid at 5Â h intervals, from 74Â h to 119Â h (extracted from Supplementary VideoÂ 2). Yellow arrowheads pinpoint to areas where segmentation is ongoing, whereas green arrowheads highlight the areas where segmentation is completed. f, Periodicity of segmentation based on live-cell imaging observations for 409B2 (corresponding serial images shown in Fig. 1c,Â 3 independent experiments, nâ€‰=â€‰9, meanâ€‰Â±SD) and 201B7 (corresponding serial images shown in e, 3 independent experiments, nâ€‰=â€‰9, meanâ€‰Â±SD). g, Axioloid length (antero-posterior) at 24Â h, 48Â h, 72Â h, and at 96Â h and 120Â h with or without MG embedding (3Â independent experiments; no MG 24Â h, 48Â h and 72Â h nâ€‰=â€‰18, and -MG 96Â h nâ€‰=â€‰14, +MG 96Â h nâ€‰=â€‰18, and -MG 120Â h nâ€‰=â€‰13, +MG 120Â h nâ€‰=â€‰18). hâ€“r, Immunofluorescence staining and quantification of axioloids. h,j,n,o,q, Representative immunofluorescence images of F-actin (Phalloidin) in gray, TBXT in cyan, and MEOX1 in red; stained axioloids at n, 72Â h no MG, h,j, 96Â h and 120Â h with MG embedding and o,q, 96Â h and 120Â h without MG embedding. i,k,p, and r, Corresponding quantification along the posterior to anterior axis of TBXT (cyan line) and MEOX1 (in red) signal intensity at i, 96Â h and 120Â h (3Â independent experiments, nâ€‰=â€‰9), k, 96Â h (3Â independent experiments, nâ€‰=â€‰14) and 120Â h (4Â independent experiments, nâ€‰=â€‰16) with MG embedding, and p,r, 96Â h (409B2 3Â independent experiments, nâ€‰=â€‰9 and 201B7 3Â independent experiments, nâ€‰=â€‰15) and 120Â h (409B2 3Â independent experiments, nâ€‰=â€‰9 and 201B7 3Â independent experiments, nâ€‰=â€‰11) without MG embedding. lâ€“m, Segment length was measured based on Phalloidin staining done in h and j in both cell lines 409B2 (3Â independent experiments, nâ€‰=â€‰9) and 201B7 Luc (3Â independent experiments, nâ€‰=â€‰9). Single channel images shown in hÂ at 96 hÂ corresponds to the merged channel imageÂ shown in Fig. 1e.Â Boxes in g,l and m represent the first and last 4th percentile intervals, whiskers show the minimum and maximum values within that range, middle lines the median, and dots represent individual data points. Lines in i,k,p and r correspond to mean values, error bands represent the 95% confidence interval, of which the top and bottom show the 2.5 and 97.5 percentiles for each data point. Scale bar is 200 Âµm.Â a.u., arbitrary units; n = number of axioloids.
Source Data


Extended Data Fig. 2 Assessment of apicobasal polarity, developmental protein- & gene expression patterns, rostrocaudal patterning, traveling wave front of HES7 oscillatory activity & segmentation in human axioloids embedded in MG.
aâ€“d, Immunofluorescence staining of MG embedded axioloids. a, and b, High magnification images (63X) of a single segment at 120Â h with F-actin (Phalloidin) in gray, aPKC and FN1 in cyan, and MEOX1 in red in a, 409B2 and b, 201B7 Luc iPS cell line-derived axioloids. c, Images of F-actin (Phalloidin) in yellow, TBXT in cyan and SOX2 in magenta at 25X magnification and d, magnified view (63X) of the stained area in c. e, Images of F-actin (Phalloidin) in gray, TBX6 in cyan and SOX2 in red. fâ€“q, HCR staining and corresponding signal quantification of stained axioloids; f, and g, HCR staining of MSGN1 in cyan, TCF15 in magenta and RIPPLY2 in yellow; h, and i, HCR staining of RIPPLY2 in yellow, LFNG in cyan and HES7 in magenta; red arrowheads highlight the stripe-like staining pattern of LFNG in the posterior half of each somite. jâ€“q, HCR staining of MESP2 in yellow, UNCX in cyan and TBX18 in magenta, and corresponding signal intensity measurements along the posterior to anterior axis normalized to the position of the MESP2 signal peak of axioloids embedded in MG at 96Â h and 120Â h respectively in 2 different cell lines shown in j,k, 409B2 (4Â independent experiments, nâ€‰=â€‰10 and 3Â independent experiments, nâ€‰=â€‰9) and l,m, 201B7 Luc (3Â independent experiments, nâ€‰=â€‰9 and 3Â independent experiments, nâ€‰=â€‰10) and axioloids without MG embedding at 96Â h in 2 cell lines shown in n,o, 409B2 (3Â independent experiments, nâ€‰=â€‰12) and p,q, 201B7 Luc (3Â independent experiments, nâ€‰=â€‰11). Single channel images shown in e,f,h, and j top panel, correspond to the merged channel images shown in Fig. 1f-i. r, and s, Annotated serial images of a forming axioloid with HES7:Luciferase signal overlayed in green (extracted from Supplementary VideoÂ 3). Colored dotted lines mark the furthermost anterior position reached by each HES7 oscillation wave of gene expression; identical colored arrowheads mark this position overtime, yellow first oscillation, red second, blue third, orange forth. s, Image at 24Â h shows that each HES7:Luciferase expression wavefront position corresponds to the area of a formed segment. t, Average HES7:Luciferase intensity measurements overtime (4Â independent experiments, nâ€‰=â€‰8) and u, corresponding signal periodicity measurement (4Â independent experiments, nâ€‰=â€‰8, mean Â±SD). Images in a,b,d,f and h are representative of 2 independent experiments; in c, and e, of 3 independent experiments. Lines in g,I,k,m,o,q and t correspond to mean values, error bands represent the 95% confidence interval, of which the top and bottom show the 2.5 and 97.5 percentiles for each data point. Scale bars in a,b and d 50 Âµm, others are 200 Âµm.Â a.u., arbitrary units; n = number of axioloids.
Source Data


Extended Data Fig. 3 Single cell RNA-seq analysis of human axioloids.
a, UMAP projection of scRNA-seq datasets of axioloids at 48Â h, 72Â h, 96Â h and 120Â h, colored by inferred cell cycle phases (G1, G2M, S). b, G2M.Score and S.Score of the cells in each cluster of Fig. 2b. c, Proportions of cell types in axioloids with and without MG for both 96Â h and 120Â h timepoints. d, Averaged expression levels of ribosomal protein genes in each cluster of Fig. 2b. e, Transition of TB marker gene expression along the time course. f, Expression levels of TBXT and SOX2 in each cell are plotted for the three TB clusters (E-TB, M-TB and L-TB, standing for early, mid and late tailbud respectively). g, Neuromesodermal progenitor (NMP) (left) and neuroectoderm (NE) (right) module scores of reported marker gene expression3 in analyzed single cells. h, Time course expression changes of previously reported NMP and neural marker genes55 in three TB clusters. i, Selected genes differentially expressed in early (E-TB) compared to late (L-TB) tailbud cell populations; top genes are highly expressed in the L-TB, bottom genes show higher expression in the E-TB. j, and k, UMAP plots of human axioloids at 72Â h in j and 120Â h (with Matrigel) in k colored by identified clusters. Arrows show RNA velocity.
Source Data


Extended Data Fig. 4 FGF and WNT signaling pathway expression and activity in human MG embedded axioloids.
aâ€“b, Expression patterns of FGF and WNT signaling pathway associated transcripts in human MG exposed axioloids at 96Â h of culture (24Â h after embedding into MG) along the pseudotime axis. Effectors and negative regulators of both pathways are included. câ€“g, HCR staining images and signal quantification of MG embedded axioloids at 96Â h and 120Â h derived from c, 409B2 and dâ€“g, 201B7 Luc iPSC lines. Shown images are representative of 3 independent experiments. câ€“e, HCR staining of MESP2 in yellow, FGF8 in cyan and WNT3A in magenta and corresponding quantification along the posterior to anterior axis of the signal intensity normalized to the position of the WNT3A signal peak for d, and e, (96Â h: 3Â independent experiments, nâ€‰=â€‰8 and 120Â h: 3Â independent experiments, nâ€‰=â€‰7). f, HCR staining of LEF1 in cyan, AXIN2 in magenta and WNT3A in yellow and corresponding quantification (3Â independent experiments, nâ€‰=â€‰9). g, HCR staining of DUSP6 in cyan, SPRY4 in magenta, and FGF8 in yellow and corresponding quantification (3Â independent experiments, nâ€‰=â€‰9). Single channel images shown in c correspond to the merged channel images shown in Fig. 3a.Â hâ€“o, HybISS based visualization and quantification of the spatial expression of WNT and FGF signaling pathway members along the posterior to anterior axis in human axioloids at 96Â h (top nâ€‰=â€‰3) and 120Â h (bottom nâ€‰=â€‰2) of culture; WNT signaling members shown in hâ€“k and FGF signaling members shown in lâ€“o; corresponding quantification of spatial expression patterns for WNT pathway related transcripts shown in i, and k, and for FGF pathway related transcripts shown in m, and o. p, Immunofluorescence staining of phospho-ERK (pERK) in cyan, beta-Catenin (CTNNB1) in magenta and TBX6 in yellow in 201B7 Luc-derived MG embedded axioloids at 96Â h. q, Corresponding quantification of the signal intensity along the posterior to anterior axis (3Â independent experiments, nâ€‰=â€‰8). r, Magnification of the posterior-most region of the axioloid shown in p. Lines in d,e,f,g and q correspond to mean values, error bands represent the 95% confidence interval, of which the top and bottom show the 2.5 and 97.5 percentiles for each data point. Lines in i,k,m and o correspond to mean values; error bands represent the SD for each data point. Scale bar is 200 Âµm.Â a.u., arbitrary units; n = number of axioloids.
Source Data


Extended Data Fig. 5 Expression gradients of RA signaling pathway members in human axioloids embedded in MG.
a, Pseudotime representation of expression of RA signaling pathway associated transcripts in human MG exposed axioloids at 96Â h of culture (24Â h after embedding into MG); effectors and negative regulators of the RA pathway gene expression patterns are arranged along pseudotime rank. bâ€“f, HCR staining images and signal quantification of MG embedded axioloids at 96Â h and 120Â h derived from b, 409B2 and câ€“f, 201B7 Luc iPSC lines. Shown images are representative of at least two independent experiments. bâ€“d, HCR staining of CYP26A1 in cyan, ALDH1A2 in magenta, RIPPLY2 in yellow of axioloids derived from b, 409B2 at 96Â h and 120Â h and 201B7 at c, 96Â h and d, 120Â h and related quantification along the posterior to anterior axis of the signal intensity. (96Â h: 3Â independent experiments, nâ€‰=â€‰6 and 120Â h: 3Â independent experiments, nâ€‰=â€‰7). e, HCR staining of +MG axioloid at 96Â h of culture for RARA in cyan, CRABP2 in magenta and RIPPLY2 in yellow and corresponding quantification (2Â independent experiments, nâ€‰=â€‰6) and f, HCR staining of +MG axioloid at 96Â h of culture for RARG in cyan, RDH10 in magenta, and RIPPLY2 in yellow (2Â independent experiments, nâ€‰=â€‰6). Single channel images shown in bÂ correspond to the merged channel images shown in Fig. 3c.Â g, i, k, HybISS based visualization of the spatial distribution along the posterior to anterior axis of RA signaling pathway members in human axioloids at 96Â h (top nâ€‰=â€‰3) and 120Â h (bottom nâ€‰=â€‰2) of culture in 409B2 derived axioloids embedded in MG and h,j,l, corresponding quantification of spatial expression. Lines in câ€“f correspond to mean values, error bands represent the 95% confidence interval, of which the top and bottom show the 2.5 and 97.5 percentiles for each data point. Lines in h,j and l correspond to mean values; error bands represent the SD for each data point. Scale bar is 200 Âµm.Â a.u., arbitrary units; n = number of axioloids.
Source Data


Extended Data Fig. 6 Single cell RNA-seq analysis: identification of DEGs associated with the exposure of axioloids to MG.
a, UMAP projection of the integrated two replicates of axioloids at 96Â h with MG, colored by the clusters of Fig. 2g. b, UMAP projection of the integrated two replicates of axioloids at 96Â h with MG, colored by the clusters of Fig. 2b. Note that b, includes only replicate 1. c, Averaged expression levels of identified EC-like marker genes in each cluster of Fig. 2b. d, Expression levels of indicated genes of the same UMAP plot in a. e, and f, Differentially expressed genes between axioloids with and without MG at 96Â h in PSM and TB, respectively, and f, a volcano plot of TB. Red and blue dots indicate up- and down-regulated genes by MG in both replicates respectively; expression changes were calculated using the FindMarkers function with a Wilcoxon rank sum test (two-sided). P-values adjusted using Bonferroni correction were plotted.
Source Data


Extended Data Fig. 7 Assessing the morphogenetic effects of retinoid signaling on human axioloids.
a, and b, Bright field images of axioloids at 96Â h and 120Â h after embedding in MG (Matrigel) only, +MG +RAL (retinal), +MG +ROL (retinol) or +MG +RA (retinoic acid) for a, 409B2 (3Â independent experiments) and b, 201B7 Luc (3Â independent experiments). c, Serial images of an elongating axioloid at 5Â h intervals, from 74Â h to 119Â h (extracted from Supplementary VideoÂ 4). Yellow arrowheads pinpointing to areas where somite formation and segmentation is ongoing whereas red for 409B2 or green for 201B7 Luc arrowheads highlight the areas where segmentation is completed. d, and e, Immunofluorescence high magnification images (X63) of a single somite of axioloids embedded in +MG +RAL at 120Â h with F-actin (Phalloidin) in gray, and from top to bottom aPKC, FN1 in cyan, and MEOX1 in red in d, 409B2 and e, 201B7 Luc iPSC lines; images are representative of two independent experiments. f, Length measurement of axioloids at 96Â h and 120Â h after embedding in MG only, +MG +ROL, +MG +RAL or +MG +RA for 201B7 Luc (3Â independent experiments, Â nâ€‰=â€‰18). g, Periodicity of somite segmentation based on live-cell imaging observations (4Â independent experiments, nâ€‰=â€‰9, mean Â±SD). h, Total number of somites in 201B7 derived axioloids embedded in +MG +ROL or +MG +RAL or +MG +RA at 120Â h (3Â independent experiments, nâ€‰=â€‰30 for ROL, nâ€‰=â€‰60 for RAL and RA). iâ€“n, Representative images of immunofluorescence staining of F-actin (Phalloidin) in gray, TBXT in cyan, and MEOX1 in red and corresponding quantification of signal intensity of axioloids embedded in +MG +ROL shown in iâ€“j, 201B7 Luc at 96Â h (3Â independent experiments, nâ€‰=â€‰7) and 120Â h (3Â independent experiments, nâ€‰=â€‰9). Immunofluorescence data of axioloids embedded in +MG +RAL shown in kâ€“l, 201B7 Luc at 96Â h (4Â independent experiments, nâ€‰=â€‰13) and 120Â h (4Â independent experiments, nâ€‰=â€‰13). Immunofluorescence data of axioloids embedded in +MG +RA shown mâ€“n, 201B7 Luc at 96Â h (3Â independent experiments, nâ€‰=â€‰15) and 120Â h (4Â independent experiments, nâ€‰=â€‰16). oâ€“t, Representative images of HCR staining of MESP2 in yellow, UNCX in cyan and TBX18 in magenta, and corresponding signal intensity measurements along the posterior to anterior axis normalized to the position of the MESP2 signal peak of axioloids embedded in +MG +ROL shown in oâ€“p, 201B7 at 96Â h (3Â independent experiments, nâ€‰=â€‰8) and at 120Â h (3Â independent experiments, nâ€‰=â€‰8); and in +MG +RAL shown in qâ€“r, 201B7 Luc at 96Â h (3Â independent experiments, nâ€‰=â€‰9) and 120Â h (3Â independent experiments, nâ€‰=â€‰9). In situ hybridization data of axioloids embedded in +MG +RA shown in sâ€“t, 201B7 Luc at 96Â h (2Â independent experiments, nâ€‰=â€‰5) and 120Â h (2Â independent experiments, nâ€‰=â€‰5). Lines in j,l,n,p,r and t correspond to mean values, error bands represent the 95% confidence interval, of which the top and bottom show the 2.5 and 97.5 percentiles for each data point. Boxes in f and h represent the first and last 4th percentile intervals, whiskers show the minimum and maximum values within that range, middle line shows the median, and dots represent individual data points. Scale bar in d and e is 50 Âµm, others are 200 Âµm.Â a.u., arbitrary units; n = number of axioloids.
Source Data


Extended Data Fig. 8 Molecular characterization of human axioloids exposed to agonists or inhibitors of retinoic acid (RA) signaling.
a, Brightfield images of 201B7 Luc-derived axioloids at 96Â h (top) and 120Â h (bottom) embedded in MG alone and supplemented with (from left to right) DMSO (2Â independent experiments, nâ€‰=â€‰12Â for 96 h andÂ nâ€‰=â€‰13 for 120 h), BMS493 (a pan-RAR inverse agonist) (3Â independent experiments, nâ€‰=â€‰18Â for 96 h and nâ€‰=â€‰17 for 120 h), or +MG +RAL supplemented with DMSO (3Â independent experiments, nâ€‰=â€‰9Â for both 96 h & 120 h), BMS493 (3Â independent experiments, nâ€‰=â€‰9Â for both 96 h & 120 h), AGN193109 (a pan-RAR inhibitor) (3Â independent experiments, nâ€‰=â€‰11 for somite number and nâ€‰=â€‰18 for length measurements for 96 h & 120 h) or ER50891 (a RARÎ±-specific inhibitor) (3Â independent experiments, nâ€‰=â€‰12 for somite number andÂ nâ€‰=â€‰18 for length measurementsÂ for 96 h & 120 h). b, Corresponding axioloid length measurements and somite numbers for axioloids shown in a (axioloids embedded in MG only are not plotted). Boxes represent the first and last 4th percentile intervals, whiskers show the minimum and maximum values within that range, middle line the median, and dots represent individual data points. Somite numbers for +MG +RAL (3 independent experiments, nâ€‰=â€‰9 for both 96 h & 120 h) are shown in upper panel. Length measurements for +MG +BMS (3Â independent experiments,Â nâ€‰=â€‰18Â for 96 h andÂ nâ€‰=â€‰17 for 120 h) and +MG + DMSOÂ (3Â independent experiments,Â nâ€‰=â€‰9 for 96 h andÂ nâ€‰=â€‰9 for 120 h) are shown in the lower panel.Â c, Serial images of forming +MG +RAL axioloids at 5Â h intervals, from 74Â h to 119Â h in the absence or presence of RA signaling inhibitors (extracted from Supplementary VideoÂ 6). Red arrowheads pinpointing to areas where segmentation is ongoing whereas blue arrowheads highlight the areas where segmentation is completed. dâ€“m, Immunofluorescence and in situ hybridization-based characterization of axioloids treated with different RA signaling inhibitors. d,j, and l, Immunofluorescence staining of axioloids embedded in +MG +RAL supplemented with d, BMS493, j, AGN193109 and l, ER50891 at 120Â h with F-actin (Phalloidin) in white, TBXT in cyan, FN1 in yellow and MEOX1 in red. e, Signal intensity quantification of d, along the posterior to anterior axis (3Â independent experiments, nâ€‰=â€‰11). f,h,k, and m, HCR staining of UNCX in cyan, TBX18 in magenta and MESP2 in yellow of axioloids embedded in +MG +RAL supplemented with BMS493 at f, 96Â h and h, 120Â h of culture or supplemented with k, AGN193109 or m, ER50891 at 120Â h of culture. g, and i Corresponding quantification of signal intensities along the posterior to anterior axis for +MG +RAL axioloids treated with BMS493 at g, 96Â h (2Â independent experiments, nâ€‰=â€‰9) and i, 120Â h (4Â independent experiments, nâ€‰=â€‰8) of culture. Lines in e,g and i correspond to mean values, error bands represent the 95% confidence interval, of which the top and bottom show the 2.5 and 97.5 percentiles for each data point. Scale bar is 200 Âµm.Â a.u., arbitrary units; n = number of axioloids.
Source Data


Extended Data Fig. 9 Single cell RNA-seq based assessment of RA signaling effect on MG embedded human axioloids.
a, Integrated UMAP projection of single-cell transcriptome profiles of axioloids with all the four conditions (control (no MG), MG only, +MG +RAL (retinal) and +MG +RA (retinoic acid) at both 96Â h and 120Â h. b, and c, Expression changes by +MG +RAL (retinal) and +MG +RA (retinoic acid) compared to the MG only conditions for consistently up- or down-regulated genesÂ at both 96Â h and 120Â h in SM b, and TB c. d, Expression changes in SM compared to the control (without MG) samples are indicated for the different conditions (MG only, RAL or RA addition) at both 96Â h and 120Â h. Genes indicated here are DEGs identified in Fig. 3g (SM 96Â h +/â€“MG). eâ€“g, Expression levels of indicated genes across different conditions in SM for both 96Â h and 120Â h human axioloids.
Source Data


Extended Data Fig. 10 Morphometric comparison of human axioloids with human CS9, CS10 and CS11 embryos.
a, and b, 3D projection image and image stack-based 3D model creation and somite volume measurement of a CS9 and a CS10 human embryo (left and right-side nâ€‰=â€‰2, human embryo data obtained from the Virtual Embryo Project https://www.ehd.org/virtual-human-embryo/). c, OPT stack single image and image stack-based 3D model creation and somite volume measurement of the 8 posterior somites of a CS11 human embryo (left and right-side nâ€‰=â€‰2, OPT data of human embryo obtained from the Human Developmental Biology Resource (HDBR)). dâ€“f, Phalloidin staining and z-stack image-based 3D model creation and somite volume measurement of 409B2 human axioloids embedded in d, +MG +ROL at 120Â h (2Â independent experiments, nâ€‰=â€‰4Â axioloids), e, +MG +RAL at 120Â h (2Â independent experiments, nâ€‰=â€‰4Â axioloids), f, +MG +RA at 120Â h (2Â independent experiments, nâ€‰=â€‰3Â axioloids). gâ€“j, comparison of g, volume, h, area, i, roundness and j, elongation of the somites of 409B2 and 201B7 Luc-derived axioloids cultured in +MG +ROL (nâ€‰=â€‰32 somitesÂ for each cell line), +MG +RAL (nâ€‰=â€‰32Â somites for each cell line) or +MG +RA (409B2 nâ€‰=â€‰24Â somites, 201B7 nâ€‰=â€‰32Â somites) and CS9-VHE (nâ€‰=â€‰8Â somites), CS10-VHE (nâ€‰=â€‰14Â somites) and CS11-OPT (nâ€‰=â€‰16Â somites) human embryos. h, Comparison of the somite area extrapolated from the volumes shown in g with the somite area measured on serial histological sections of CS10 (1Â embryoÂ nâ€‰=â€‰16Â somites) and CS11 (3Â embryosÂ nâ€‰=â€‰17Â somites) embryos. Boxes in dâ€“f and hâ€“j represent the first and last 4th percentile intervals, whiskers show the minimum and maximum values within that range, middle line the median, and dots represent individual data points.Â a.u., arbitrary units.
Source Data


Extended Data Fig. 11 Molecular (scRNA-seq) comparison of human axioloids with human CS12 embryo.
aâ€“g, UMAP projection of scRNA-seq datasets of CS12 human embryo. aâ€“b and jâ€“l, Colored by cell types. Annotations are mostly by Xu et al39 except for PSM. bâ€“d, UMAP projection of the integrated scRNA-seq datasets of CS12 human embryo and human axioloids embedded in Matrigel and exposed to retinal. c, Anatomical origin of embryonic samples (rostral and caudal halves of the embryo) are indicated in green (rostral) or blue (caudal) respectively and the TB population found in axioloids is highlighted and shown to match with the caudal (lower/tail) aspect of the embryo. d, The cells from axioloid samples at 96Â h or 120Â h are highlighted in red (96Â h) or green (120Â h) on the UMAP projection. The same color code was used to represent in e, the PSM and in g, the EC-like and endothelial cell clusters of axioloid and embryo origin. f, The TB of axioloids (red), and neuromesodermal progenitors (NMP) (green) and neural progenitors (NP) (blue) of the human CS12 embryo are highlighted. h,i, Averaged expression levels of indicated genes in each cluster. h, Shown genes are marker genes of annotated clusters of the CS12 human embryo by Xu et. al and i, marker genes of human axioloids. j, Shows UMAP projection of a redefined PSM cell population based on new marker gene expression, as well as NMP and somitic cells based on the Xu et al. annotation. k, Cells of the CS12 embryo or, l, only the somite, PSM, NMP, and neural progenitor (NP) cells were subjected to velocity analysis and plotted with the same UMAP coordinates as in a and b. RNA velocity is indicated by arrows. m, Expression of TBXT, SOX2, TBX6, HES7, RIPPLY2 and MESP2 genes in the CS12 human embryo on the UMAP projection with magnified views of areas marked by dotted lines shown in the upper right corner. n, Integrated UMAP plot of the axioloid and embryo data. Number of cells from axioloids and from the human embryo origin assigned to each of the 55 identified clusters was used to calculate the Pearson correlation efficiency, results are plotted Fig. 5d.


Extended Data Fig. 12 Molecular characterization of angioblast/EC-like cells found in MG treated human axioloids.
a, Heatmap showing the expression levels of gene markers specific to murine trunk-like structure (TLS) endothelial cells3 or mouse embryo angioblasts56 in the different subpopulations of cells present in human axioloids at 48Â h, 72Â h, 96Â h (+MG), and 120Â h (+MG). b, Representative HCR staining with DAPI in gray, TCF15 in yellow, ETV2 in cyan and KDR in magenta of human 201B7 Luc-derived axioloid at 96Â h in MG only (top) or +MG +RAL (bottom). Right panel is a magnified view of the rostral aspect of the axioloid. câ€“d, Z-stack visualization of an immunofluorescence stained 201B7 Luc-derived axioloid in +MG +RAL at 96Â h with F-actin (Phalloidin) in gray, MEOX1 in cyan, ETV2 in yellow and KDR in magenta; c, corresponds to the max intensity projection along the z-axis for the MEOX1, ETV2 and KDR channels; d, corresponds to the optical cross section of a somite, which relative position is marked by dashed line on the single plane merged image. Z-stack has been denoised using an AI based software. eâ€“f, High magnification imaging of somite surface with F-actin (Phalloidin) in blue, MEOX1 in gray, ETV2 in yellow and KDR in magenta. In dâ€“f red arrowheads pinpoint to MEOX1-/KDR+/ETV2+ cells, white ones to MEOX1low/KDR+/ETV2+ cells, green one to MEOX1+/KDR-/ETV2+ and blue one to MEOX1+/KDR+/ETV2- cells. Images shown in b are representative of 2 independent experiments and images shown in câ€“f of 3 independent experiments. Scale bar is 50 Âµm in d (right panels) and eâ€“f, otherwise 200 Âµm.


Extended Data Fig. 13 Assessment of the Hox code in human axioloids.
aâ€“d, Pseudotime representation of expression of HOXA, HOXB, HOXC and HOXD cluster associated genes in human MG exposed axioloids at 96Â h of culture (24Â h after embedding into MG); gene expression patterns arranged along pseudotime rank. e,g, and i, Top panels, analysis of the epigenetic landscape at the HOXA, HOXB and HOXD loci in axioloids at 96Â h (24Â h after embedding into MG and exposure to retinal) profiled by CUT&Tag using antibodies against H3K4me3 (green) and H3K27me3 (red). Bottom panels, visualization of the spatial distribution of the HOXA, HOXB and HOXD transcripts using HybISS analysis of all the members of the respective HOX clusters using sections of 96Â h and 120Â h axioloids cultured in +MG +RAL. f,h, and j, Heatmap plots of the HybISS data shown in e,g and i showing the average HOXA, HOXB and HOXD cluster gene expression along the posterior to anterior axis of 96Â h and 120Â h +MG +RAL axioloids normalized to the position of the MESP2 signal peak (nâ€‰=â€‰3Â axioloids). k, Averaged expression levels of HOXA, HOXB, HOXC, and HOXD genes in whole axioloids exposed to different conditions at 72Â h, 96Â h and 120Â h.
Source Data


Extended Data Fig. 14 Modulating RA, FGF, WNT and Notch signaling in human axioloids.
aâ€“o and s, Quantification of the total HES7:luciferase signal over time and corresponding period measurements as the time interval between the consecutive HES7:Luciferase signal peaks in axioloids +/- MG in a,b, +ROL (retinol) (Â 4 independent experiments nâ€‰=â€‰12 and 5Â independent experiments, nâ€‰=â€‰20), c,d, +RAL (retinal) (5Â independent experiments, nâ€‰=â€‰17 and 5Â independent experiments, nâ€‰=â€‰20), e,f, +RA (retinoic acid) with e, (5Â independent experiments, nâ€‰=â€‰20 andÂ 5Â independent experiments, nâ€‰=â€‰20) and f, (6Â independent experiments, nâ€‰=â€‰22 and 5Â independent experiments, nâ€‰=â€‰20). gâ€“i, Kymographs of the HES7:luciferase signal for axioloids embedded in g, +MG +ROL (3Â independent experiments, nâ€‰=â€‰9), h, +MG +RAL (5Â independent experiments, nâ€‰=â€‰9), and i, +MG +RA (4Â independent experiments, nâ€‰=â€‰8). j, Quantification of average signals in g,h, and i. k, Periodicity measurement of oscillatory activity in g,h and i. l, and m, Kymographs of the HES7:luciferase signal for axioloids embedded in l, +MG +RAL +DMSO (3Â independent experiments, nâ€‰=â€‰6) and m, +MG +RAL +BMS493 (3Â independent experiments, nâ€‰=â€‰5). n, Quantification of average signals in l and m. o, Periodicity measurement of oscillatory activity in l and m. p, Measurement of the total HES7:luciferase signal over time in +MG only (most left) axioloids treated with BMS493 (4Â independent experiments, nâ€‰=â€‰12) and +MG +RAL axioloids treated with BMS493 (3Â independent experiments, nâ€‰=â€‰9), AGN193101 (3Â independent experiments, nâ€‰=â€‰9) and ER50891 (3Â independent experiments, nâ€‰=â€‰9) (most right). q,r, Measurement of the total HES7:luciferase signal over time in +MG +RAL axioloids treated with q, two FGF signaling inhibitors (from left to right) PD173074 (3Â independent experiments, nâ€‰=â€‰9), PD0325901 (5Â independent experiments, nâ€‰=â€‰20), and r, two WNT inhibitors (from left to right) XAV939 (3Â independent experiments, nâ€‰=â€‰9) and IWP2 (5Â independent experiments, nâ€‰=â€‰20). s, Measurement of the total HES7:luciferase signal over time in +MG +RAL axioloids treated with Notch inhibitor DAPT (3Â independent experiments, nâ€‰=â€‰9). t, Representative brightfield images of axioloids embedded in +MG +RAL supplemented with (from left to right) DMSO, DAPT, PD173074, PD0325901, XAV939 and IWP2 at 96Â h and 120Â h of culture. u, Comparison of the total number of somites (upper panel) and total length (lower panel) of axioloids embedded in +MG +RAL and supplemented with (from left to right) DMSO (3Â independent experiments, nâ€‰=â€‰9), DAPT (3Â independent experiments, nâ€‰=â€‰9), PD173074 (3Â independent experiments, nâ€‰=â€‰9), PD0325901 (3Â independent experiments, nâ€‰=â€‰10), XAV939 (3Â independent experiments, nâ€‰=â€‰9) and IWP2 (3Â independent experiments, nâ€‰=â€‰11) (each reagent is shown in a different colour). Plots in b,d,f,k and o correspond to mean Â±SD. Lines in a,c,e,j,n,p,q and s correspond to the mean values, error bands represent the 95% confidence interval, of which the top and bottom show the 2.5 and 97.5 percentiles for each data point. Boxes in u represent the first and last 4th percentile intervals, whiskers show the minimum and maximum values within that range, middle line the median, and dots represent individual data points. Scale bar is 200 Âµm.Â a.u., arbitrary units; n = number of axioloids.
Source Data


Extended Data Fig. 15 Morphological, molecular and functional characterization of patient-like iPSC-derived axioloids with mutations in HES7 and MESP2.
Panels aâ€“e, show data for HES7 KO2, panels fâ€“j, show data for HES7R25W Mt2 and panels kâ€“o, show data for MESP2 KO2; all control and patient-like axioloids were grown under +MG +RAL conditions. a,f, and k, Serial brightfield images of a forming axioloid at 72Â h, 96Â h and 120Â h. b,g, and l, Immunofluorescence staining and signal quantification of +MG +RAL embedded axioloids at 120Â h. Top, merged channel images of axioloids stained for F-actin (Phalloidin) in gray, TBXT (BRA) in cyan, FN1 in yellow, and MEOX1 in red. Bottom, corresponding quantification along the posterior to anterior axis of TBXT (blue line) and MEOX1 (in red) signal intensity for HES7 KO2 (3Â independent experiments, nâ€‰=â€‰9), HES7R25W MT2 (3Â independent experiments, nâ€‰=â€‰9) and MESP2 KO2 (3Â independent experiments, nâ€‰=â€‰12). c,h, and m, HCR staining and signal quantification of +MG +RAL embedded axioloids at 120Â h, UNCX in cyan and TBX18 in magenta, MESP2 in yellow, and corresponding signal intensity measurements along the posterior to anterior axis normalized to the position of the MESP2 signal peak for HES7 KO2 (3Â independent experiments, nâ€‰=â€‰8), HES7R25W Mt2 (3Â independent experiments, nâ€‰=â€‰8) and MESP2 KO2 (3Â independent experiments, nâ€‰=â€‰9). d,i, and n, Kymograph of HES7 oscillatory activity for d, HES7 KO1 and KO2, i, HES7R25W Mt1 and Mt2, and n, MESP2 KO1 and KO2 patient-like axioloids embedded in +MG +RAL. All experiments were performed under +MG +RAL condition. e,j,o, Average measured HES7:Luciferase signal over time for HES7 KO1 (5Â independent experiments, nâ€‰=â€‰8), HES7 KO2 (6Â independent experiments, nâ€‰=â€‰9), HES7R25W Mt1 (5Â independent experiments, nâ€‰=â€‰10), HES7R25W Mt2 (5Â independent experiments, nâ€‰=â€‰9), MESP2 KO1 (3Â independent experiments, nâ€‰=â€‰6), MESP2 KO2 (3Â independent experiments, nâ€‰=â€‰7) and 201B7 Luc +MG +RALÂ (5Â independent experiments, nâ€‰=â€‰9 data identical to the one shown in Fig. 14j). Lines in b,c,e,g,h,j,l,m and o correspond to mean values, error bands represent the 95% confidence interval, of which the top and bottom show the 2.5 and 97.5 percentiles for each data point. Scale bar is 200 Î¼m.Â a.u., arbitrary units; n = number of axioloids.
Source Data
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Supplementary Video 1
Symmetry breaking and initial elongation of axioloids. Live imaging of axioloids derived from 409B2 (upper) and 201B7 Luc (lower) between 24Â h and 72Â h of culture. Data shown is representative of at least three independent experiments. Scale bar is 200 Âµm.


Supplementary Video 2
Effect of Matrigel on axioloid morphology. Live imaging of axioloids derived from 409B2 (upper) and 201B7 Luc (lower) with +MG (right) or without -MG (left) embedding into Matrigel (MG) between 72Â h and 120Â h of culture. Data shown is representative of at least three independent experiments. Scale bar is 200 Âµm.


Supplementary Video 3
HES7 gene expression dynamics in MG embedded axioloids. Live imaging of the spatiotemporal morphogenetic expression of the HES7 gene in a 201B7 Luc-derived axioloid embedded in MG from 72Â h to 120Â h of culture. BF video (left) and HES7:Luciferase signal (right). Data shown is representative of at least three independent experiments. Scale bar is 200 Âµm.


Supplementary Video 4
Effect of retinoid signaling on axioloid growth and morphology. Live imaging of axioloids derived from 409B2 (top panels) and 201B7 Luc (bottom panels) after embedding in MG only (left) or in MG supplemented with ROL, RAL or RA (right) from 72Â h to 120Â h of culture. Data shown is representative of at least three independent experiments. Scale bar is 200 Âµm.


Supplementary Video 5
3D reconstruction of retinoid-treated axioloids. 3D reconstruction of 409B2-derived axioloids embedded in MG only (upper left) or in MG supplemented with ROL (lower left), RAL (lower right) or RA (upper right) at 120Â h of culture stained for F-actin (Phalloidin) in gray, TBXT (BRA) in blue, Fibronectin (FN1) in green and MEOX1 in red.


Supplementary Video 6
Effect of RA pathway inhibition on axioloid growth and morphology. Live imaging of axioloids derived from 201B7 Luc after embedding in +MG +RAL supplemented with (from left to right) DMSO, BMS493, AGN193109 or ER50891 from 72Â h to 120Â h of culture. Data shown is representative of at least three independent experiments. Scale bar is 200 Âµm.


Supplementary Video 7
3D visualization of axioloids treated with RA pathway inhibitors. 3D reconstruction of axioloids derived from 201B7 Luc embedded in +MG +RAL (upper left) or in +MG +RAL supplemented with three different RA inhibitors, including BMS493 (upper right), AGN193109 (lower left) or ER50891 (lower right) at 120Â h of culture stained for F-actin (Phalloidin) in gray, TBXT (BRA) in blue, Fibronectin (FN1) in green and MEOX1 in red.


Supplementary Video 8
Midline and bilateral somite formation in axioloids. Visualization of midline formation in a 409B2-derived axioloid embedded in +MG +RAL (top) and of formation of a single bilateral somite in 409B2-derived axioloid embedded in +MG +ROL (bottom). Live imaging was performed between 72 and 120Â h of culture. Scale bar is 200 Âµm.


Supplementary Video 9
3D reconstruction of somites in axioloids and human CS9-11 embryos. 3D reconstruction of somites formed in 409B2-derived MG embedded axioloids (top) treated ROL (left), RAL (middle) and RA; and 3D reconstructions of somites in human embryos (bottom) found in CS9 (left), CS10 (middle) and CS11 (right) human embryos. Each somite-like structure is highlighted by a different color depending on its position along the antero-posterior axis.


Supplementary Video 10
Effect of ROL, RAL or RA on HES7 gene expression dynamics. Live imaging of the spatiotemporal morphogenetic expression of the HES7 gene in 201B7 Luc-derived axioloids embedded in MG only (upper left pair) or in MG supplemented with ROL (lower left pair), RAL (lower right pair) or RA (upper right pair) from 72Â h to 120Â h of culture. BF video (left) and HES7:Luciferase signal (right) for each condition. Data shown is representative of at least three independent experiments. Scale bar is 200 Âµm.


Supplementary Video 11
Effect of BMS493 supplementation on HES7 gene expression dynamics. Live imaging of the spatiotemporal morphogenetic expression of the HES7 gene in 201B7 Luc-derived axioloids embedded in MG supplemented with +RAL+DMSO (left pair) or +RAL+BMS493 (right pair), from 72Â h to 120Â h of culture. BF video (left) and HES7:Luciferase signal (right) for each condition. Data shown is representative of at least three independent experiments. Scale bar is 200 Âµm.


Supplementary Video 12
Effect of NOTCH, FGF and WNT pathway inhibition on axioloids. Live imaging of axioloids derived from 201B7 Luc after embedding in +MG +RAL supplemented with DMSO (top left), DAPT (top right), PD173074 (middle left), PD0325901 (middle right), XAV939 (bottom left) or IWP2 (bottom right) from 72Â h to 120Â h of culture. Data shown is representative of at least three independent experiments. Scale bar is 200 Âµm.


Supplementary Video 13
Effect of HES7 gene KO on axioloid growth and morphology. Top panel, live imaging of axioloids embedded in +MG +RAL derived from 201B7 Luc (top left), HES7 KO1 (top middle) and HES7 KO2 (top right) cell lines. Data shown is representative of at least three independent experiments. Scale bar is 200 Âµm. Bottom panel, 3D reconstruction of axioloids embedded in +MG +RAL derived from HES7 KO1 (middle) and HES7 KO2 (bottom) stained with F-actin (Phalloidin) in gray, TBXT (BRA) in blue, Fibronectin (FN1) in green and MEOX1 in red.


Supplementary Video 14
Effect of HES7 gene KO on HES7 gene expression dynamics. Live imaging of the spatiotemporal expression of the HES7 gene in 201B7 Luc, (top pair), HES7 KO1 (middle pair) and HES7 KO2 (bottom pair)-derived axioloids embedded in +MG +RAL. BF video (left) and HES7:Luciferase signal (right) for each condition. Data shown is representative of at least three independent experiments. Scale bar is 200 Âµm.


Supplementary Video 15
Effect of HES7 point mutation (rs113994160: c.73C>T; HES7R25W) on axioloid growth and morphology. Top panel, live imaging of axioloids embedded in +MG +RAL derived from 201B7 Luc (top left), HES7R25W MT1 (top middle) and HES7R25W MT2 (top right) cell lines. Data shown is representative of at least three independent experiments. Scale bar is 200â€‰Âµm. Bottom panel, 3D reconstruction of axioloids embedded in +MG +RAL derived from HES7R25W MT1 (middle) and HES7R25W MT2 (bottom) stained with F-actin (Phalloidin) in gray, TBXT (BRA) in blue, Fibronectin (FN1) in green and MEOX1 in red.


Supplementary Video 16
Effect of HES7 point mutation (rs113994160: c.73C>T; HES7R25W) on HES7 gene expression dynamics. Live imaging of the spatiotemporal expression of the HES7 gene in 201B7 Luc, (top pair), HES7R25W MT1 (middle pair) and HES7R25W MT2 (bottom pair)-derived axioloids. BF video (left) and HES7:Luciferase signal (right) for each condition. Data shown is representative of at least three independent experiments. Scale bar is 200â€‰Âµm.


Supplementary Video 17
Effect of MESP2 gene KO on axioloid growth and morphology. Top panel, live imaging of axioloids embedded in +MG +RAL derived from 201B7 Luc (top left), MESP2 KO1 (top middle) and MESP2 KO2 (top right) cell lines. Data shown is representative of at least three independent experiments. Scale bar is 200 Âµm. Bottom panel, 3D reconstruction of axioloids embedded in +MG +RAL derived from MESP2 KO1 (middle) and MESP2 KO2 (bottom) stained with F-actin (Phalloidin) in gray, TBXT (BRA) in blue, Fibronectin (FN1) in green and MEOX1 in red.


Supplementary Video 18
Effect of MESP2 gene KO on HES7 gene expression dynamics. Live imaging of the spatiotemporal expression of the HES7 gene in 201B7 Luc (top pair), MESP2 KO1 (middle pair) and MESP2 KO2 (bottom pair)-derived axioloids embedded in +MG +RAL. BF video (left) and HES7:Luciferase signal (right) for each condition. Data shown is representative of at least three independent experiments. Scale bar is 200 Âµm.
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