Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spin cross-correlation experiments in an electron entangler


Correlations are fundamental in describing many-body systems. However, in experiments, correlations are notoriously difficult to assess on a microscopic scale, especially for electron spins. Even though it is firmly established theoretically that the electrons in a Cooper pair1 of a superconductor form maximally spin-entangled singlet states with opposite spin projections2,3,4, no spin correlation experiments have been demonstrated so far. Here we report the direct measurement of the spin cross-correlations between the currents of a Cooper pair splitter5,6,7,8,9,10,11,12,13, an electronic device that emits electrons originating from Cooper pairs. We use ferromagnetic split-gates14,15, compatible with nearby superconducting structures, to individually spin polarize the transmissions of the quantum dots in the two electronic paths, which act as tunable spin filters. The signals are detected in standard transport and in highly sensitive transconductance experiments. We find that the spin cross-correlation is negative, consistent with spin singlet emission, and deviates from the ideal value mostly due to the overlap of the Zeeman split quantum dot states. Our results demonstrate a new route to perform spin correlation experiments in nano-electronic devices, especially suitable for those relying on magnetic field sensitive superconducting elements, like triplet or topologically non-trivial superconductors16,17,18, or to perform Bell tests with massive particles19,20.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Principles of spin and charge correlation CPS experiments.
Fig. 2: Spin correlation measurements.
Fig. 3: Transconductance measurements.
Fig. 4: Magnetic field tuning of the QD spin polarization.

Data availability

All data in the publication are available in numerical form at


  1. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).

    Article  ADS  MathSciNet  CAS  MATH  Google Scholar 

  2. Recher, P., Sukhorukov, E. V. & Loss, D. Andreev tunneling, coulomb blockade, and resonant transport of nonlocal spin-entangled electrons. Phys. Rev. B 63, 165314 (2001).

    Article  ADS  Google Scholar 

  3. Lesovik, G., Martin, T. & Blatter, G. Electronic entanglement in the vicinity of a superconductor. Eur. Phys. J. B 24, 287–290 (2001).

    Article  ADS  CAS  Google Scholar 

  4. Samuelsson, P., Sukhorukov, E. V. & Büttiker, M. Orbital entanglement and violation of bell inequalities in mesoscopic conductors. Phys. Rev. Lett. 91, 157002 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Hofstetter, L., Csonka, S., Nygård, J. & Schönenberger, C. Cooper pair splitter realized in a two-quantum-dot y-junction. Nature 461, 960–963 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Herrmann, L. G. et al. Carbon nanotubes as cooper-pair beam splitters. Phys. Rev. Lett. 104, 026801 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Das, A. High-efficiency cooper pair splitting demonstrated by two-particle conductance resonance and positive noise cross-correlation. Nat. Commun. 3, 1165 (2012).

    Article  ADS  PubMed  Google Scholar 

  8. Schindele, J., Baumgartner, A. & Schönenberger, C. Near-unity cooper pair splitting efficiency. Phys. Rev. Lett. 109, 157002 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Fülöp, G. et al. Local electrical tuning of the nonlocal signals in a cooper pair splitter. Phys. Rev. B 90, 235412 (2014).

    Article  ADS  Google Scholar 

  10. Tan, Z. et al. Cooper pair splitting by means of graphene quantum dots. Phys. Rev. Lett. 114, 096602 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Ranni, A., Brange, F., Mannila, E. T., Flindt, C. & Maisi, V. F. Real-time observation of cooper pair splitting showing strong non-local correlations. Nat. Commun. 12, 6358 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pandey, P., Danneau, R. & Beckmann, D. Ballistic graphene cooper pair splitter. Phys. Rev. Lett. 126, 147701 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Wang, G. et al. Singlet and triplet cooper pair splitting in superconducting-semiconducting hybrid nanowires. Preprint at (2022).

  14. Fábián, G. et al. Magnetoresistance engineering and singlet/triplet switching in InAs nanowire quantum dots with ferromagnetic sidegates. Phys. Rev. B 94, 195415 (2016).

    Article  ADS  Google Scholar 

  15. Bordoloi, A., Zannier, V., Sorba, L., Schönenberger, C. & Baumgartner, A. A double quantum dot spin valve.Commun. Phys. 3, 135 (2020).

    Article  Google Scholar 

  16. Bergeret, F. S., Volkov, A. F. & Efetov, K. B. Odd triplet superconductivity and related phenomena in superconductor-ferromagnet structures. Rev. Mod. Phys. 77, 1321–1373 (2005).

    Article  ADS  CAS  Google Scholar 

  17. Benjamin, C. Crossed andreev reflection as a probe for the pairing symmetry of ferromagnetic superconductors. Phys. Rev. B 74, 180503 (2006).

    Article  ADS  Google Scholar 

  18. Jeon, K.-R. et al. Long-range supercurrents through a chiral non-collinear antiferromagnet in lateral josephson junctions. Nat. Mater. 20, 1358–1363 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Braunecker, B., Burset, P. & Yeyati, A. L. Entanglement detection from conductance measurements in carbon nanotube cooper pair splitters. Phys. Rev. Lett. 111, 136806 (2013).

    Article  ADS  PubMed  Google Scholar 

  20. Kłobus, W. et al. Entanglement witnessing and quantum cryptography with nonideal ferromagnetic detectors. Phys. Rev. B. 89, 125404 (2014).

    Article  ADS  Google Scholar 

  21. Beenakker, C. W. J. Random-matrix theory of quantum transport. Rev. Mod. Phys. 69, 731–808 (1997).

    Article  ADS  CAS  Google Scholar 

  22. Russo, S., Kroug, M., Klapwijk, T. M. & Morpurgo, A. F. Experimental observation of bias-dependent nonlocal andreev reflection. Phys. Rev. Lett. 95, 027002 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Cadden-Zimansky, P., Wei, J. & Chandrasekhar, V. Cooper-pair-mediated coherence between two normal metals. Nat. Phys. 5, 393–397 (2009).

    Article  CAS  Google Scholar 

  24. Kleine, A., Baumgartner, A., Trbovic, J. & Schönenberger, C. Contact resistance dependence of crossed andreev reflection. EPL (Europhys. Lett.) 87, 27011 (2009).

    Article  ADS  Google Scholar 

  25. Kawabata, S. Test of bell’s inequality using the spin filter effect in ferromagnetic semiconductor microstructures. J. Phys. Soc. Jpn. 70, 1210–1213 (2001).

    Article  ADS  CAS  Google Scholar 

  26. Futterer, D., Governale, M., Pala, M. G. & König, J. Nonlocal andreev transport through an interacting quantum dot. Phys. Rev. B 79, 054505 (2009).

    Article  ADS  Google Scholar 

  27. Trocha, P. & Weymann, I. Spin-resolved andreev transport through double-quantum-dot cooper pair splitters. Phys. Rev. B 91, 235424 (2015).

    Article  ADS  Google Scholar 

  28. Trocha, P. & Wrześniewski, K. Cross-correlations in a quantum dot cooper pair splitter with ferromagnetic leads. J. Phys.: Condens. Matter 30, 305303 (2018).

    PubMed  Google Scholar 

  29. Tam, M., Flindt, C. & Brange, F. Optimal entanglement witness for cooper pair splitters. Phys. Rev. B 104, 245425 (2021).

    Article  ADS  CAS  Google Scholar 

  30. Busz, P., Tomaszewski, D. & Martinek, J. Spin correlation and entanglement detection in cooper pair splitters by current measurements using magnetic detectors. Phys. Rev. B 96, 064520 (2017).

    Article  ADS  Google Scholar 

  31. Beckmann, D., Weber, H. B. & v. Löhneysen, H. Evidence for crossed andreev reflection in superconductor-ferromagnet hybrid structures. Phys. Rev. Lett. 93, 197003 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Scherübl, Z., Pályi, A. & Csonka, S. Probing individual split cooper pairs using the spin qubit toolkit. Phys. Rev. B 89, 205439 (2014).

    Article  ADS  Google Scholar 

  33. Hels, M., Braunecker, B., Grove-Rasmussen, K. & Nygård, J. Noncollinear spin-orbit magnetic fields in a carbon nanotube double quantum dot. Phys. Rev. Lett. 117, 276802 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Ranni, A. et al. Local and non-local two-electron tunneling processes in a cooper pair splitter. Preprint at (2022).

  35. Kurebayashi, H., Garcia, J. H., Khan, S., Sinova, J. & Roche, S. Magnetism, symmetry and spin transport in van der waals layered systems. Nat. Rev. Phys. 4, 150-166 (2022).

  36. Thomas, F. S. et al. Highly symmetric and tunable tunnel couplings in InAs/InP nanowire heterostructure quantum dots. Nanotechnology 31, 135003 (2020).

    Article  ADS  CAS  Google Scholar 

  37. He, J. J., Ng, T., Lee, P. A. & Law, K. Selective equal-spin andreev reflections induced by majorana fermions. Phys. Rev. Lett. 112, 037001 (2014).

    Article  ADS  PubMed  Google Scholar 

  38. Mourik, V. et al. Signatures of majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336, 1003–1007 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Deng, M. T. et al. Majorana bound state in a coupled quantum-dot hybrid-nanowire system. Science 354, 1557–1562 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Gomes, U. P., Ercolani, D., Zannier, V., Beltram, F. & Sorba, L. Controlling the diameter distribution and density of InAs nanowires grown by au-assisted methods. Semiconductor Sci. Technol. 30, 115012 (2015).

    Article  ADS  Google Scholar 

  41. Aurich, H. et al. Permalloy-based carbon nanotube spin-valve. Appl. Phys. Lett. 97, 153116 (2010).

    Article  ADS  Google Scholar 

  42. Desjardins, M. M. et al. Synthetic spin–orbit interaction for majorana devices. Nat. Mater. 18, 1060–1064 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Jiang, Y. et al. Hysteretic magnetoresistance in nanowire devices due to stray fields induced by micromagnets. Nanotechnology 32, 095001 (2020).

    Article  ADS  Google Scholar 

  44. Maurer, L., Gamble, J., Tracy, L., Eley, S. & Lu, T. Designing nanomagnet arrays for topological nanowires in silicon. Phys. Rev. Appl. 10, 054071 (2018).

    Article  ADS  CAS  Google Scholar 

  45. Jünger, C. et al. Magnetic-field-independent subgap states in hybrid rashba nanowires. Phys. Rev. Lett. 125, 017701 (2020).

    Article  ADS  PubMed  Google Scholar 

Download references


This work has received funding from the Swiss National Science Foundation, the Swiss Nanoscience Institute, the Swiss NCCR QSIT, the FlagERA project, the QuantERA SuperTop project network and the FET Open project AndQC. C.S. has received funding from the European Research Council under the European Union’s Horizons 2020 research and innovation programme.

Author information

Authors and Affiliations



A. Bordoloi fabricated the devices, performed the measurements, analysed and interpreted the data. V.Z. and L.S. grew the NWs. A. Baumgartner helped with the measurements, data analysis and interpretation. A. Bordoloi and A. Baumgartner wrote the paper. C.S. and A. Baumgartner initiated and supervised the project. All authors discussed the results and contributed to the manuscript.

Corresponding authors

Correspondence to Arunav Bordoloi or Andreas Baumgartner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for the contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Spin dependence for competing two electron transport processes in a CPS device.

Here, we list all possible two electron transport processes relevant in a Cooper pair splitter, with a focus on the effects of spin filters placed at the two output ports. We note that LPT + SET (process 4) may mimick the CPS charge signal, but can be distinguished using spin filtering.

Extended Data Fig. 2 \({\boldsymbol{\Delta }}{{\boldsymbol{G}}}_{{\bf{1}}}^{{\bf{m}}}\) for the QD resonance A1 in Fig. 1d of the main text.

Maximum conductance \({G}_{1}^{{\rm{m}}}\) as a function of gate voltage Vg2 for resonance A1 of QD1, showing peaks whenever QD2 is tuned across any of the Coulomb blockade resonances A2-D2.

Extended Data Fig. 3 Normal-state measurements at B = + 150 mT.

a,b Differential conductances G1 and G2 respectively, measured simultaneously as a function of Vg1 and Vg2 at a bias voltage of Vdc = 0 and an external magnetic field of B = + 150 mT. c Maximum conductance \({G}_{1}^{{\rm{m}}}\) as a function of gate voltage Vg2 at B = + 150 mT (red curve), showing a much smaller modulation and no obvious correlation to G2, when the latter (black curve) is tuned through Coulomb blockade peaks using Vg2. d Maximum conductance \({G}_{1}^{{\rm{m}}}\) as a function of gate voltage Vg2 at B = 0 for the same resonances as in c, showing peaks when G2 is tuned across Coulomb blockade resonances by Vg2. We note that the scale of \({G}_{1}^{{\rm{m}}}\) is adjusted to show the same conductance span.

Extended Data Fig. 4 Data supporting Fig. 2 of the main text.

a,b Differential conductances G1 and G2 respectively, as a function of Vg1 and Vg2 at zero bias voltage, Vdc = 0 and zero external magnetic field, B = 0, for the resonance crossing (R1, R2) described in Fig. 2 in the main text.

Extended Data Fig. 5 Transconductance Measurements for the four magnetization states at B = 0 and B = + 200 mT.

a,b,c,d Transconductance \({G}_{12}^{{\rm{(tr)}}}=\frac{{I}_{1}^{{\rm{(ac2)}}}}{{V}_{{\rm{g2}}}^{{\rm{(ac)}}}}\) (a,c) and \({G}_{21}^{{\rm{(tr)}}}=\frac{{I}_{2}^{{\rm{(ac1)}}}}{{V}_{{\rm{g1}}}^{{\rm{(ac)}}}}\) (b,d) measured as a function of Vg1 and Vg2 with a bias of Vdc = 25μV applied to S, for each magnetization state (j, k) indicated in each figure, at B = 0 (a,b) and B = + 200 mT (c,d) for the resonance crossings M1 and N2 in Fig. 3 of the main text. We do not observe any modulation of the transconductance if S is in the normal state (B = + 200 mT).

Extended Data Fig. 6 Conductance maxima modulation at finite magnetic fields for main text Fig. 4.

a,b Differential conductances G1 and G2 respectively, measured as a function of Vg1 and Vg2 at zero bias Vdc = 0 and B = 0. c Maximum conductance \({G}_{1}^{{\rm{m}}}\) as a function of the gate voltage Vg2 for the resonances in a and b, showing peaks when G2 is tuned across Coulomb blockade resonances by Vg2. d,e,f Modulation of the conductance maximum, \(\Delta {G}_{1}^{{\rm{m}}}\), for all four magnetization states (j, k) measured at B = 0 (d), B = ± 20 mT (e), and B = ± 45 mT (f) for the resonance crossing (X1,X2).

Extended Data Fig. 7 Background conductance Gbg versus the external magnetic field B.

Here we plot the background conductance at the respective resonance position, extracted from the parabolic fits discussed in the main text. This background is most probably dominated by LPT processes. We note that Gbg decreases with increasing B, as expected for the local Cooper pair related processes (see Extended Data Fig. 1) for an increasing QD spin polarization, while we would not expect such a decay for normal-state single electron processes on such small field scales.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12 and references.

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bordoloi, A., Zannier, V., Sorba, L. et al. Spin cross-correlation experiments in an electron entangler. Nature (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing