Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Origin of life-forming volatile elements in the inner Solar System

Abstract

Volatile elements such as hydrogen, carbon, nitrogen and oxygen are essential ingredients to build habitable worlds like Earth, but their origin and evolution on terrestrial planets remain highly debated. Here we discuss the processes that distributed these elements throughout the early Solar System and how they then became incorporated into planetary building blocks. Volatiles on Earth and the other terrestrial planets appear to have been heterogeneously sourced from different Solar System reservoirs. The sources of planetary volatiles and the timing at which they were accreted to growing planets probably play a crucial role in controlling planet habitability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The main steps of PSN formation from the collapse of the molecular cloud core until planet formation, and the associated processes controlling H, C, N and O distribution and isotopic fractionation.
Fig. 2: Abundance and distribution of volatile elements in planetary bodies of the Solar System.
Fig. 3: Main stages of planetary formation and volatile incorporation into terrestrial building blocks within the PSN.

Similar content being viewed by others

References

  1. Adams, F. C. The birth environment of the Solar System. Annu. Rev. Astron. Astrophys. 48, 47–85 (2010). This paper reviews and discusses the working scenarios for star-forming environments and their implications regarding star and planet formation.

    Article  ADS  CAS  Google Scholar 

  2. Turner, N. J. et al. in Protostars and Planets VI (eds Beuther, H. et al.) 411–432 (Univ. Arizona Press, 2014).

  3. Hayashi, C. Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Prog. Theor. Phys. Suppl. 70, 35–53 (1981).

    Article  ADS  Google Scholar 

  4. Grossman, L. & Larimer, J. W. Early chemical history of the Solar System. Rev. Geophys. 12, 71–101 (1974). This study established the thermodynamics of Solar System formation by condensation of a hot nebular gas.

    Article  ADS  CAS  Google Scholar 

  5. Albarède, F. Volatile accretion history of the terrestrial planets and dynamic implications. Nature 461, 1227–1233 (2009).

    Article  ADS  PubMed  Google Scholar 

  6. Alexander, C. M. O. D. et al. The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337, 721–723 (2012). This paper uses bulk hydrogen and nitrogen isotopic compositions of CI chondrites to suggest that they were the principal source of Earth’s volatiles.

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Marty, B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313–314, 56–66 (2012).

    Article  ADS  Google Scholar 

  8. Halliday, A. N. The origins of volatiles in the terrestrial planets. Geochim. Cosmochim. Acta 105, 146–171 (2013).

    Article  ADS  CAS  Google Scholar 

  9. Dauphas, N. & Morbidelli, A. in Treatise on Geochemistry 2nd edn (eds Holland, H. D. & Turekian, K. K.) 1–35 (Elsevier, 2014).

  10. Bergin, E. A., Blake, G. A., Ciesla, F., Hirschmann, M. M. & Li, J. Tracing the ingredients for a habitable Earth from interstellar space through planet formation. Proc. Natl Acad. Sci. USA 112, 8965–8970 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ciesla, F. J., Lauretta, D. S., Cohen, B. A. & Hood, L. L. A nebular origin for chondritic fine-grained phyllosilicates. Science 299, 549–552 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Ku, Y. & Jacobsen, S. B. Potassium isotope anomalies in meteorites inherited from the protosolar molecular cloud. Sci. Adv. 6, eabd0511 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yokoyama, T., Nagai, Y., Fukai, R. & Hirata, T. Origin and evolution of distinct molybdenum isotopic variabilities within carbonaceous and noncarbonaceous reservoirs. Astrophys. J. 883, 62 (2019).

    Article  ADS  CAS  Google Scholar 

  14. Terzieva, R. & Herbst, E. The possibility of nitrogen isotopic fractionation in interstellar clouds. Mon. Not. R. Astron. Soc. 317, 563–568 (2000).

    Article  ADS  CAS  Google Scholar 

  15. Aikawa, Y., Furuya, K., Hincelin, U. & Herbst, E. Multiple paths of deuterium fractionation in protoplanetary disks. Astrophys. J. 855, 119 (2018).

    Article  ADS  Google Scholar 

  16. Sandford, S. A., Berstein, M. P. & Dworkin, J. P. Assessment of the interstellar processes leading to deuterium enrichment in meteoritic organics. Meteorit. Planet. Sci. 36, 1117–1133 (2001).

    Article  ADS  CAS  Google Scholar 

  17. Cleeves, L. I. et al. The ancient heritage of water ice in the Solar System. Science 345, 1590–1593 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Rodgers, S. D. & Charnley, S. B. Nitrogen superfractionation in dense cloud cores. Mon. Not. R. Astron. Soc. 385, L48–L52 (2008).

    Article  ADS  Google Scholar 

  19. Pignatale, F. C., Charnoz, S., Chaussidon, M. & Jacquet, E. Making the planetary material diversity during the early assembling of the Solar System. Astrophys. J. 867, L23 (2018).

    Article  ADS  Google Scholar 

  20. Lodders, K. Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2003). This paper summarizes and selects the best currently available solar photospheric and meteoritic CI chondrite abundances for all elements.

    Article  ADS  CAS  Google Scholar 

  21. Chakraborty, S., Ahmed, M., Jackson, T. L. & Thiemens, M. H. Experimental test of self-shielding in vacuum ultraviolet photodissociation of CO. Science 321, 1328–1331 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Bally, J. & Langer, W. D. Isotope-selective photodestruction of carbon monoxide. Astrophys. J. 255, 143 (1982).

    Article  ADS  CAS  Google Scholar 

  23. Yurimoto, H. & Kuramoto, K. Molecular cloud origin for the oxygen isotope heterogeneity in the Solar System. Science 305, 1763–1766 (2004). This paper reports self-shielding in molecular clouds as a cause of mass-independent isotope fractionation of oxygen.

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Lyons, J. R. & Young, E. D. CO self-shielding as the origin of oxygen isotope anomalies in the early solar nebula. Nature 435, 317–320 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Alexander, C. M. O. D., Cody, G. D., De Gregorio, B. T., Nittler, L. R. & Stroud, R. M. The nature, origin and modification of insoluble organic matter in chondrites, the major source of Earth’s C and N. Chem. Erde 77, 227–256 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tartèse, R., Chaussidon, M., Gurenko, A., Delarue, F. & Robert, F. Insights into the origin of carbonaceous chondrite organics from their triple oxygen isotope composition. Proc. Natl Acad. Sci. USA 115, 8535–8540 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  27. Kuga, M., Cernogora, G., Marrocchi, Y., Tissandier, L. & Marty, B. Processes of noble gas elemental and isotopic fractionations in plasma-produced organic solids: cosmochemical implications. Geochim. Cosmochim. Acta 217, 219–230 (2017).

    Article  ADS  CAS  Google Scholar 

  28. Bekaert, D. V., Marrocchi, Y., Meshik, A., Remusat, L. & Marty, B. Primordial heavy noble gases in the pristine Paris carbonaceous chondrite. Meteorit. Planet. Sci. 54, 395–414 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Robert, F. et al. Hydrogen isotope fractionation in methane plasma. Proc. Natl Acad. Sci. USA 114, 870–874 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Laurent, B. et al. The deuterium/hydrogen distribution in chondritic organic matter attests to early ionizing irradiation. Nat. Commun. 6, 8567 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Füri, E., Chaussidon, M. & Marty, B. Evidence for an early nitrogen isotopic evolution in the solar nebula from volatile analyses of a CAI from the CV3 chondrite NWA 8616. Geochim. Cosmochim. Acta 153, 183–201 (2015).

  32. Grewal, D. S., Dasgupta, R. & Marty, B. A very early origin of isotopically distinct nitrogen in inner Solar System protoplanets. Nat. Astron. 5, 356–364 (2021).

    Article  ADS  Google Scholar 

  33. Heays, A. N. et al. Isotope selective photodissociation of N2 by the interstellar radiation field and cosmic rays. Astron. Astrophys. 562, A61 (2014).

    Article  Google Scholar 

  34. Garani, J. & Lyons, J. R. Modeling nitrogen isotope chemistry in the solar nebula. In Lunar and Planetary Conference 2540 (LPI, 2020).

  35. Muskatel, B. H., Remacle, F., Thiemens, M. H. & Levine, R. D. On the strong and selective isotope effect in the UV excitation of N2 with implications toward the nebula and Martian atmosphere. Proc. Natl Acad. Sci. USA 108, 6020–6025 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chakraborty, S. et al. Massive isotopic effect in vacuum UV photodissociation of N2 and implications for meteorite data. Proc. Natl Acad. Sci. USA 111, 14704–14709 (2014). This paper reports laboratory experiments that reproduce the large nitrogen isotope fractionation during irradiation.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Briani, G. et al. Pristine extraterrestrial material with unprecedented nitrogen isotopic variation. Proc. Natl Acad. Sci. USA 106, 10522–10527 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Busemann, H. Interstellar chemistry recorded in organic matter from primitive meteorites. Science 312, 727–730 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Lyons, J. R., Gharib-Nezhad, E. & Ayres, T. R. A light carbon isotope composition for the Sun. Nat. Commun. 9, 908 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  40. Meijerink, R., Pontoppidan, K. M., Blake, G. A., Poelman, D. R. & Dullemond, C. P. Radiative transfer models of mid-infrared H2O lines in the planet-forming region of circumstellar disks. Astrophys. J. 704, 1471–1481 (2009).

    Article  ADS  CAS  Google Scholar 

  41. Krijt, S., Ciesla, F. J. & Bergin, E. A. Tracing water vapor and ice during dust growth. Astrophys. J. 833, 285 (2016).

    Article  ADS  Google Scholar 

  42. Nakano, H., Kouchi, A., Tachibana, S. & Tsuchiyama, A. Evaporation of interstellar organic materials in the solar nebula. Astrophys. J. 592, 1252–1262 (2003).

    Article  ADS  CAS  Google Scholar 

  43. Lodders, K. Jupiter formed with more tar than ice. Astrophys. J. 611, 587–597 (2004).

    Article  ADS  CAS  Google Scholar 

  44. Righter, K., Sutton, S. R., Danielson, L., Pando, K. & Newville, M. Redox variations in the inner Solar System with new constraints from vanadium XANES in spinels. Am. Mineral. 101, 1928–1942 (2016).

    Article  ADS  Google Scholar 

  45. Bermingham, K. R., Füri, E., Lodders, K. & Marty, B. The NC–CC isotope dichotomy: implications for the chemical and isotopic evolution of the early Solar System. Space Sci. Rev. 216, 133 (2020).

  46. Nakano, H. et al. Precometary organic matter: a hidden reservoir of water inside the snow line. Sci. Rep. 10, 7755 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dullemond, C. P. & Dominik, C. The effect of dust settling on the appearance of protoplanetary disks. Astron. Astrophys. 421, 1075–1086 (2004).

    Article  ADS  Google Scholar 

  48. Ciesla, F. J. Residence times of particles in diffusive protoplanetary disk environments. I. Vertical motions. Astrophys. J. 723, 514–529 (2010).

    Article  ADS  Google Scholar 

  49. Charnoz, S., Fouchet, L., Aléon, J. & Moreira, M. Three-dimensional Lagragian turbulent diffusion of dust grains in a protoplanetary disk: methods and applications. Astrophys. J. 737, 33 (2011).

    Article  ADS  Google Scholar 

  50. Birnstiel, T., Fang, M. & Johansen, A. Dust evolution and the formation of planetesimals. Space Sci. Rev. 205, 41–75 (2016).

    Article  ADS  Google Scholar 

  51. Weidenschilling, S. J. Aerodynamics of solid bodies in the solar nebula. Mon. Not. R. Astron. Soc. 180, 57–70 (1977).

    Article  ADS  Google Scholar 

  52. Kouchi, A. et al. Rapid growth of asteroids owing to very sticky interstellar organic grains. Astrophys. J. 566, L121–L124 (2002).

    Article  ADS  CAS  Google Scholar 

  53. Wang, H., Bell, R. C., Iedema, M. J., Tsekouras, A. A. & Cowin, J. P. Sticky ice grains aid planet formation: unusual properties of cryogenic water ice. Astrophys. J. 620, 1027–1032 (2005).

    Article  ADS  CAS  Google Scholar 

  54. Ros, K. & Johansen, A. Ice condensation as a planet formation mechanism. Astron. Astrophys. 552, A137 (2013).

    Article  ADS  Google Scholar 

  55. Simon, J. B., Armitage, P. J., Li, R. & Youdin, A. N. The mass and size distribution of planetesimals formed by the steaming instability. I. The role of self-gravity. Astrophys. J. 822, 55 (2016).

    Article  ADS  Google Scholar 

  56. Johansen, A. et al. A pebble accretion model for the formation of the terrestrial planets in the Solar System. Sci. Adv. 7, eabc0444 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Drążkowska, J. & Alibert, Y. Planetesimal formation starts at the snow line. Astron. Astrophys. 608, A92 (2017).

    Article  ADS  Google Scholar 

  58. Morbidelli, A. et al. Contemporary formation of early Solar System planetesimals at two distinct radial locations. Nat. Astron. 6, 72–79 (2022).

    Article  ADS  Google Scholar 

  59. Izidoro, A. et al. Planetesimal rings as the cause of the Solar System’s planetary architecture. Nat. Astron. 6, 357–366 (2021).

  60. Lichtenberg, T., Dra̧żkowska, J., Schönbächler, M., Golabek, G. J. & Hands, T. O. Bifurcation of planetary building blocks during Solar System formation. Science 371, 365–370 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Piani, L. et al. Earth’s water may have been inherited from material similar to enstatite chondrite meteorites. Science 369, 1110–1113 (2020). This study showed that enstatite chondrites contain more hydrogen than previously expected, with a D/H ratio similar to that of Earth’s mantle, potentially indicating that Earth may have accreted significant water from the inner Solar System.

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Marrocchi, Y., Bekaert, D. V. & Piani, L. Origin and abundance of water in carbonaceous asteroids. Earth Planet. Sci. Lett. 482, 23–32 (2018).

    Article  ADS  CAS  Google Scholar 

  63. Vacher, L. G. et al. Hydrogen in chondrites: influence of parent body alteration and atmospheric contamination on primordial components. Geochim. Cosmochim. Acta 281, 53–66 (2020).

    Article  ADS  CAS  Google Scholar 

  64. Wetherill, G. W. Occurrence of giant impacts during the growth of the terrestrial planets. Science 228, 877–879 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Raymond, S. N., Armitage, P. J. & Gorelick, N. Planet-planet scaterring in planetesimal disks. Astrophys. J. 699, L88–L92 (2009).

    Article  ADS  CAS  Google Scholar 

  66. Pollack, J. B. et al. Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124, 62–85 (1996).

    Article  ADS  Google Scholar 

  67. Wang, H. et al. Lifetime of the solar nebula constrained by meteorite paleomagnetism. Science 355, 623–627 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  68. Lambrechts, M. & Johansen, A. Rapid growth of gas-giant cores by pebble accretion. Astron. Astrophys. 544, A32 (2012).

    Article  ADS  Google Scholar 

  69. Johansen, A. & Lambrechts, M. Forming planets via pebble accretion. Annu. Rev. Earth Planet. Sci. 45, 359–387 (2017). This paper reviews all aspects of planet formation by pebble accretion, from dust growth over planetesimal formation to the accretion of protoplanets and fully grown planets with gaseous envelopes.

    Article  ADS  CAS  Google Scholar 

  70. Kruijer, T. S. et al. Protracted core formation and rapid accretion of protoplanets. Science 344, 1150–1154 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  71. Kaminski, E., Limare, A., Kenda, B. & Chaussidon, M. Early accretion of planetesimals unraveled by the thermal evolution of the parent bodies of magmatic iron meteorites. Earth Planet. Sci. Lett. 548, 116469 (2020).

    Article  CAS  Google Scholar 

  72. Dauphas, N. & Pourmand, A. Hf–W–Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 473, 489–492 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  73. Barrat, J.-A. et al. A 4,565-My-old andesite from an extinct chondritic protoplanet. Proc. Natl Acad. Sci. USA 118, e2026129118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jaupart, E., Charnoz, S. & Moreira, M. Primordial atmosphere incorporation in planetary embryos and the origin of neon in terrestrial planets. Icarus 293, 199–205 (2017).

    Article  ADS  CAS  Google Scholar 

  75. Olson, P. L. & Sharp, Z. D. Nebular atmosphere to magma ocean: a model for volatile capture during Earth accretion. Phys. Earth Planet. Inter. 294, 106294 (2019).

    Article  CAS  Google Scholar 

  76. Yokochi, R. & Marty, B. A determination of the neon isotopic composition of the deep mantle. Earth Planet. Sci. Lett. 225, 77–88 (2004).

    Article  ADS  CAS  Google Scholar 

  77. Williams, C. D. & Mukhopadhyay, S. Capture of nebular gases during Earth’s accretion is preserved in deep-mantle neon. Nature 565, 78–81 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  78. Heber, V. S. et al. Isotopic mass fractionation of solar wind: evidence from fast and slow solar wind collected by the Genesis mission. Astrophys. J. 759, 121 (2012).

    Article  ADS  Google Scholar 

  79. Péron, S., Moreira, M. & Agranier, A. Origin of light noble gases (He, Ne, and Ar) on Earth: a review. Geochem. Geophys. Geosyst. 19, 979–996 (2018).

    Article  ADS  Google Scholar 

  80. Holland, G., Cassidy, M. & Ballentine, C. J. Meteorite Kr in Earth’s mantle suggests a late accretionary source for the atmosphere. Science 326, 1522–1525 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  81. Broadley, M. W. et al. Identification of chondritic krypton and xenon in Yellowstone gases and the timing of terrestrial volatile accretion. Proc. Natl Acad. Sci. USA 117, 13997–14004 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Péron, S., Mukhopadhyay, S., Kurz, M. D. & Graham, D. W. Deep-mantle krypton reveals Earth’s early accretion of carbonaceous matter. Nature 600, 462–467 (2021).

    Article  ADS  PubMed  Google Scholar 

  83. Lux, G. The behavior of noble gases in silicate liquids: solution, diffusion, bubbles and surface effects, with applications to natural samples. Geochim. Cosmochim. Acta 51, 1549–1560 (1987).

    Article  ADS  CAS  Google Scholar 

  84. Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P. & Mandell, A. M. A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  85. Dalou, C., Hirschmann, M. M., von der Handt, A., Mosenfelder, J. & Armstrong, L. S. Nitrogen and carbon fractionation during core–mantle differentiation at shallow depth. Earth Planet. Sci. Lett. 458, 141–151 (2017).

    Article  ADS  CAS  Google Scholar 

  86. Grewal, D. S., Dasgupta, R. & Farnell, A. The speciation of carbon, nitrogen, and water in magma oceans and its effect on volatile partitioning between major reservoirs of the Solar System rocky bodies. Geochim. Cosmochim. Acta 280, 281–301 (2020).

    Article  ADS  CAS  Google Scholar 

  87. McCoy, T. J., Dickinson, T. L. & Lofgren, G. E. Partial melting of the Indarch (EH4) meteorite: a textural, chemical, and phase relations view of melting and melt migration. Meteorit. Planet. Sci. 34, 735–746 (1999).

    Article  ADS  CAS  Google Scholar 

  88. Grady, M. M. & Wright, I. P. Elemental and isotopic abundances of carbon and nitrogen in meteorites. Space Sci. Rev. 106, 231–248 (2003).

    Article  ADS  CAS  Google Scholar 

  89. Rubie, D. C. et al. Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water. Icarus 248, 89–108 (2015). This study modelled the accretion and differentiation of Earth, showing that to fit the composition of Earth’s mantle, material accreting to Earth probably become more oxidizing through time.

    Article  ADS  CAS  Google Scholar 

  90. Javoy, M. et al. The chemical composition of the Earth: enstatite chondrite models. Earth Planet. Sci. Lett. 293, 259–268 (2010).

    Article  ADS  CAS  Google Scholar 

  91. Dauphas, N. The isotopic nature of the Earth’s accreting material through time. Nature 541, 521–524 (2017). This study used a range of elements with distinct affinities for metal to show that the material accreted by Earth always comprised a large fraction of enstatite-type impactors.

    Article  ADS  CAS  PubMed  Google Scholar 

  92. Palot, M., Cartigny, P., Harris, J. W., Kaminsky, F. V. & Stachel, T. Evidence for deep mantle convection and primordial heterogeneity from nitrogen and carbon stable isotopes in diamond. Earth Planet. Sci. Lett. 357–358, 179–193 (2012).

    Article  ADS  Google Scholar 

  93. Cartigny, P. & Marty, B. Nitrogen isotopes and mantle geodynamics: the emergence of life and the atmosphere–crust–mantle connection. Elements 9, 359–366 (2013).

    Article  CAS  Google Scholar 

  94. Hallis, L. J. et al. Evidence for primordial water in Earth’s deep mantle. Science 350, 795–797 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  95. Loewen, M. W., Graham, D. W., Bindeman, I. N., Lupton, J. E. & Garcia, M. O. Hydrogen isotopes in high 3He/4He submarine basalts: primordial vs. recycled water and the veil of mantle enrichment. Earth Planet. Sci. Lett. 508, 62–73 (2019).

    Article  ADS  CAS  Google Scholar 

  96. Fischer, R. A., Cottrell, E., Hauri, E., Lee, K. K. M. & Le Voyer, M. The carbon content of Earth and its core. Proc. Natl Acad. Sci. USA 117, 8743–8749 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  97. Grewal, D. S., Dasgupta, R., Sun, C., Tsuno, K. & Costin, G. Delivery of carbon, nitrogen, and sulfur to the silicate Earth by a giant impact. Sci. Adv. 5, eaau3669 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  98. Iizuka-Oku, R. et al. Hydrogenation of iron in the early stage of Earth’s evolution. Nat. Commun. 8, 14096 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wu, J. et al. Origin of Earth’s water: chondritic inheritance plus nebular ingassing and storage of hydrogen in the core. J. Geophys. Res. Planets 123, 2691–2712 (2018).

    Article  ADS  CAS  Google Scholar 

  100. Bouhifd, M. A., Jephcoat, A. P., Heber, V. S. & Kelley, S. P. Helium in Earth’s early core. Nat. Geosci. 6, 982–986 (2013).

    Article  ADS  CAS  Google Scholar 

  101. Burkhardt, C. et al. Terrestrial planet formation from lost inner Solar System material. Sci. Adv. 7, eabj7601 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  102. Budde, G., Burkhardt, C. & Kleine, T. Molybdenum isotopic evidence for the late accretion of outer Solar System material to Earth. Nat. Astron. 3, 736–741 (2019).

    Article  ADS  Google Scholar 

  103. Raymond, S. N., Izidoro, A. & Morbidelli, A. in Planetary Astrobiology (eds Meadows, V. et al.) 287–324 (Univ. Arizona Press, 2020). A broad overview of planetary system formation models, which attempt to explain the unique distribution of planets that exists in our Solar System.

  104. Wood, B. J., Li, J. & Shahar, A. Carbon in the core: its influence on the properties of core and mantle. Rev. Mineral. Geochem. 75, 231–250 (2013).

    Article  CAS  Google Scholar 

  105. Hirschmann, M. M. Constraints on the early delivery and fractionation of Earth’s major volatiles from C/H, C/N, and C/S ratios. Am. Mineral. 101, 540–553 (2016).

    Article  ADS  Google Scholar 

  106. Marty, B. et al. An evaluation of the C/N ratio of the mantle from natural CO2-rich gas analysis: geochemical and cosmochemical implications. Earth Planet. Sci. Lett. 551, 116574 (2020).

    Article  CAS  Google Scholar 

  107. Schlichting, H. E. & Mukhopadhyay, S. Atmosphere impact losses. Space Sci. Rev. 214, 34 (2018).

    Article  ADS  Google Scholar 

  108. Tucker, J. M. & Mukhopadhyay, S. Evidence for multiple magma ocean outgassing and atmospheric loss episodes from mantle noble gases. Earth Planet. Sci. Lett. 393, 254–265 (2014).

    Article  ADS  CAS  Google Scholar 

  109. Canup, R. M. et al. Origin of the Moon. Preprint at https://arxiv.org/abs/2103.02045 (2021).

  110. Hartmann, W. K. & Davis, D. R. Satellite-sized planetesimals and lunar origin. Icarus 24, 504–515 (1975).

    Article  ADS  Google Scholar 

  111. Cameron, A. G. W. & Ward, W. R. The origin of the Moon. In Lunar and Planetary Conference 120 (LPI, 1976).

  112. Lock, S. J., Bermingham, K. R., Parai, R. & Boyet, M. Geochemical constraints on the origin of the Moon and preservation of ancient terrestrial heterogeneities. Space Sci. Rev. 216, 109 (2020).

    Article  ADS  CAS  Google Scholar 

  113. Canup, R. M. Forming a Moon with an Earth-like composition via a giant impact. Science 338, 1052–1055 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  114. Cuk, M. & Stewart, S. T. Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning. Science 338, 1047–1052 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  115. Porcelli, D., Woolum, D. & Cassen, P. Deep Earth rare gases: initial inventories, capture from the solar nebula, and losses during Moon formation. Earth Planet. Sci. Lett. 193, 237–251 (2001).

    Article  ADS  CAS  Google Scholar 

  116. Genda, H. & Abe, Y. Enhanced atmospheric loss on protoplanets at the giant impact phase in the presence of oceans. Nature 433, 842–844 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  117. Pepin, R. O. On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus 92, 2–79 (1991). Presents a model on how atmospheric escape processes may explain differences between Earth’s atmosphere and cosmochemical precursors.

    Article  ADS  CAS  Google Scholar 

  118. Mukhopadhyay, S. & Parai, R. Noble gases: a record of Earth’s evolution and mantle dynamics. Annu. Rev. Earth Planet. Sci. 47, 389–419 (2019). A review of how volatiles were accreted to, and subsequently evolved, on Earth by examining the noble gas signatures found in the different mantle reservoirs and the atmosphere.

    Article  ADS  CAS  Google Scholar 

  119. Kimura, K., Lewis, R. S. & Anders, E. Distribution of gold and rhenium between nickel-iron and silicate melts: implications for the abundance of siderophile elements on the Earth and Moon. Geochim. Cosmochim. Acta 38, 683–701 (1974).

    Article  ADS  CAS  Google Scholar 

  120. Walker, R. J. Highly siderophile elements in the Earth, Moon and Mars: update and implications for planetary accretion and differentiation. Geochemistry 69, 101–125 (2009).

    Article  CAS  Google Scholar 

  121. Albarede, F. et al. Asteroidal impacts and the origin of terrestrial and lunar volatiles. Icarus 222, 44–52 (2013).

  122. Marty, B. & Yokochi, R. Water in the early Earth. Rev. Mineral. Geochem. 62, 421–450 (2006).

  123. Hirschmann, M. M. Comparative deep Earth volatile cycles: the case for C recycling from exosphere/mantle fractionation of major (H2O, C, N) volatiles and from H2O/Ce, CO2/Ba, and CO2/Nb exosphere ratios. Earth Planet. Sci. Lett. 502, 262–273 (2018).

    Article  ADS  CAS  Google Scholar 

  124. Dasgupta, R., Buono, A., Whelan, G. & Walker, D. High-pressure melting relations in Fe–C–S systems: implications for formation, evolution, and structure of metallic cores in planetary bodies. Geochim. Cosmochim. Acta 73, 6678–6691 (2009).

    Article  ADS  CAS  Google Scholar 

  125. Peslier, A. H., Schönbächler, M., Busemann, H. & Karato, S.-I. Water in the Earth’s interior: distribution and origin. Space Sci. Rev. 212, 743–810 (2017).

    Article  ADS  CAS  Google Scholar 

  126. Fulle, M. et al. The refractory-to-ice mass ratio in comets. Mon. Not. R. Astron. Soc. 482, 3326–3340 (2019).

    Article  ADS  CAS  Google Scholar 

  127. Owen, T. & Bar-Nun, A. Comets, impacts, and atmospheres. Icarus 116, 215–226 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  128. Hartogh, P. et al. Ocean-like water in the Jupiter-family comet 103P/Hartley 2. Nature 478, 218–220 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  129. Marty, B. et al. Xenon isotopes in 67P/Churyumov–Gerasimenko show that comets contributed to Earth’s atmosphere. Science 356, 1069–1072 (2017). Quantitative evidence for cometary contribution to Earth’s surface.

    Article  ADS  CAS  PubMed  Google Scholar 

  130. Bekaert, D. V., Broadley, M. W. & Marty, B. The origin and fate of volatile elements on Earth revisited in light of noble gas data obtained from comet 67P/Churyumov–Gerasimenko. Sci. Rep. 10, 5796 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  131. Avice, G. & Marty, B. Perspectives on atmospheric evolution from noble gas and nitrogen isotopes on Earth, Mars & Venus. Space Sci. Rev. 216, 36 (2020).

    Article  ADS  CAS  Google Scholar 

  132. Carr, M. H. & Head, J. W. III Oceans on Mars: an assessment of the observational evidence and possible fate. J. Geophys. Res. 108, 5042 (2003).

    Article  Google Scholar 

  133. Way, M. J. & Del Genio, A. D. Venusian habitable climate scenarios: modeling Venus through time and applications to slowly rotating Venus‐like exoplanets. J. Geophys. Res. Planets 125, e2019JE006276 (2020).

  134. Way, M. J. et al. Was Venus the first habitable world of our Solar System? Geophys. Res. Lett. 43, 8376–8383 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  135. Donahue, T. M., Hoffman, J. H., Hodges, R. R. & Watson, A. J. Venus was wet: a measurement of the ratio of deuterium to hydrogen. Science 216, 630–633 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  136. Zahnle, K. J., Lupu, R., Catling, D. C. & Wogan, N. Creation and evolution of impact-generated reduced atmospheres of early Earth. Planet. Sci. J. 1, 11 (2020).

    Article  Google Scholar 

  137. Catling, D. C. & Zahnle, K. J. The Archean atmosphere. Sci. Adv. 6, eaax1420 (2020). A review on the composition and fate of evolution of the atmosphere during the Archean eon.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  138. Mojzsis, S. J., Harrison, T. M. & Pidgeon, R. T. Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature 409, 178–181 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  139. Wilde, S. A., Valley, J. W., Peck, W. H. & Graham, C. M. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175–178 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  140. Lee, J.-E., Bergin, E. A. & Lyons, J. R. Oxygen isotope anomalies of the Sun and the original environment of the Solar System. Meteorit. Planet. Sci. 43, 1351–1362 (2008).

    Article  ADS  CAS  Google Scholar 

  141. Bouvier, A. & Wadhwa, M. The age of the Solar System redefined by the oldest Pb–Pb age of a meteoritic inclusion. Nat. Geosci. 3, 637–641 (2010).

    Article  ADS  CAS  Google Scholar 

  142. Connelly, J. N., Bollard, J. & Bizzarro, M. Pb–Pb chronometry and the early Solar System. Geochim. Cosmochim. Acta 201, 345–363 (2017).

    Article  ADS  CAS  Google Scholar 

  143. Morbidelli, A., Lunine, J. I., O’Brien, D. P., Raymond, S. N. & Walsh, K. J. Building terrestrial planets. Annu. Rev. Earth Planet. Sci. 40, 251–275 (2012).

    Article  ADS  CAS  Google Scholar 

  144. Desch, S. J., Kalyaan, A. & Alexander, C. M. O. The effect of Jupiter’s formation on the distribution of refractory elements and inclusions in meteorites. Astrophys. J. Suppl. Ser. 238, 11 (2018).

    Article  ADS  Google Scholar 

  145. McCubbin, F. M. & Barnes, J. J. Origin and abundances of H2O in the terrestrial planets, Moon, and asteroids. Earth Planet. Sci. Lett. 526, 115771 (2019). This study showed that the earliest-formed planetesimals in the inner Solar System contained non-nebular hydrogen, indicating that interstellar ice was likely to be present in the early inner Solar System and could have contributed to the volatile budget of the terrestrial planets.

    Article  CAS  Google Scholar 

  146. Lellouch, E. et al. The deuterium abundance in Jupiter and Saturn from ISO-SWS observations. Astron. Astrophys. 370, 610–622 (2001).

    Article  ADS  CAS  Google Scholar 

  147. Geiss, J. & Gloeckler, G. in Primordial Nuclei and Their Galactic Evolution (eds Prantzos, N. et al.) 239–250 (Springer, 1998).

  148. Bockelée-Morvan, D. et al. Cometary isotopic measurements. Space Sci. Rev. 197, 47–83 (2015).

    Article  ADS  Google Scholar 

  149. Piani, L., Marrocchi, Y., Vacher, L. G., Yurimoto, H. & Bizzarro, M. Origin of hydrogen isotopic variations in chondritic water and organics. Earth Planet. Sci. Lett. 567, 117008 (2021).

    Article  CAS  Google Scholar 

  150. Hässig, M. et al. Isotopic composition of CO2 in the coma of 67P/Churyumov–Gerasimenko measured with ROSINA/DFMS. Astron. Astrophys. 605, A50 (2017).

    Article  Google Scholar 

  151. Owen, T., Mahaffy, P. R., Niemann, H. B., Atreya, S. & Wong, M. Protosolar nitrogen. Astrophys. J. 553, L77–L79 (2001).

    Article  ADS  CAS  Google Scholar 

  152. Marty, B., Chaussidon, M., Wiens, R. C., Jurewicz, A. J. G. & Burnett, D. S. A 15N-poor isotopic composition for the Solar System as shown by genesis solar wind samples. Science 332, 1533–1536 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  153. Meibom, A. et al. Nitrogen and carbon isotopic composition of the Sun inferred from a high-temperature solar nebular condensate. Astrophys. J. 656, L33–L36 (2007).

    Article  ADS  CAS  Google Scholar 

  154. Füri, E. & Marty, B. Nitrogen isotope variations in the Solar System. Nat. Geosci. 8, 515–522 (2015).

  155. Trinquier, A. et al. Origin of nucleosynthetic isotope heterogeneity in the solar protoplanetary disk. Science 324, 374–376 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  156. Leya, I., Schönbächler, M., Wiechert, U., Krähenbühl, U. & Halliday, A. N. Titanium isotopes and the radial heterogeneity of the Solar System. Earth Planet. Sci. Lett. 266, 233–244 (2008).

    Article  ADS  CAS  Google Scholar 

  157. Warren, P. H. Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: a subordinate role for carbonaceous chondrites. Earth Planet. Sci. Lett. 311, 93–100 (2011). This study used stable istopes of Cr, Ti and O to reveal the existence of a fundamental dichotomy between carbonaceous and non-carbonaceous chondrites.

    Article  ADS  CAS  Google Scholar 

  158. Kruijer, T. S., Kleine, T. & Borg, L. E. The great isotopic dichotomy of the early Solar System. Nat. Astron. 4, 32–40 (2020). A summary of cosmochemical and planetary observations that led to the concept of separation of outer and inner Solar System regions owing to the growth of giant planets.

    Article  ADS  Google Scholar 

  159. Morbidelli, A. et al. Fossilized condensation lines in the Solar System protoplanetary disk. Icarus 267, 368–376 (2016).

    Article  ADS  CAS  Google Scholar 

  160. Brasser, R. & Mojzsis, S. J. The partitioning of the inner and outer Solar System by a structured protoplanetary disk. Nat. Astron. 4, 492–499 (2020).

    Article  ADS  Google Scholar 

  161. Mazor, E., Heymann, D. & Anders, E. Noble gases in carbonaceous chondrites. Geochim. Cosmochim. Acta 34, 781–824 (1970).

    Article  ADS  CAS  Google Scholar 

  162. Huss, G. R. & Lewis, R. S. Noble gases in presolar diamonds II: Component abundances reflect thermal processing. Meteoritics 29, 811–829 (1994).

    Article  ADS  CAS  Google Scholar 

  163. Ozima, M. & Zahnle, K. Mantle degassing and atmospheric evolution: noble gas view. Geochem. J. 27, 185–200 (1993).

    Article  ADS  CAS  Google Scholar 

  164. Busemann, H., Baur, H. & Wieler, R. Primordial noble gases in “phase Q” in carbonaceous and ordinary chondrites studied by closed-system stepped etching. Meteorit. Planet. Sci. 35, 949–973 (2000).

    Article  ADS  CAS  Google Scholar 

  165. Marty, B. Meteoritic noble gas constraints on the origin of terrestrial volatiles. Icarus 380, 115020 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (PHOTONIS Advanced Grant number 695618 to B.M. and VOLATILIS Starting Grant 715028 to E.F.) and the French Research National Agency (grant ANR-19-CE31-0027-01 to L.P.). We thank N. Schnuriger for sharing with us the picture of CV NWA 10235 used in Fig. 1h. This is CRPG contribution 2830.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the writing of the manuscript.

Corresponding author

Correspondence to Michael W. Broadley.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Jessica Barnes, Edwin Bergin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Broadley, M.W., Bekaert, D.V., Piani, L. et al. Origin of life-forming volatile elements in the inner Solar System. Nature 611, 245–255 (2022). https://doi.org/10.1038/s41586-022-05276-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05276-x

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing