Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Screening for generality in asymmetric catalysis

Abstract

Research in the field of asymmetric catalysis over the past half century has resulted in landmark advances, enabling the efficient synthesis of chiral building blocks, pharmaceuticals and natural products1,2,3. A small number of asymmetric catalytic reactions have been identified that display high selectivity across a broad scope of substrates; not coincidentally, these are the reactions that have the greatest impact on how enantioenriched compounds are synthesized4,5,6,7,8. We postulate that substrate generality in asymmetric catalysis is rare not simply because it is intrinsically difficult to achieve, but also because of the way chiral catalysts are identified and optimized9. Typical discovery campaigns rely on a single model substrate, and thus select for high performance in a narrow region of chemical space. Here we put forth a practical approach for using multiple model substrates to select simultaneously for both enantioselectivity and generality in asymmetric catalytic reactions from the outset10,11. Multisubstrate screening is achieved by conducting high-throughput chiral analyses by supercritical fluid chromatography–mass spectrometry with pooled samples. When applied to Pictet–Spengler reactions, the multisubstrate screening approach revealed a promising and unexpected lead for the general enantioselective catalysis of this important transformation, which even displayed high enantioselectivity for substrate combinations outside of the screening set.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Approaches to the discovery and analysis of enantioselective reactions.
Fig. 2: Development of the SFC–MS method.
Fig. 3: High-throughput e.e. determination of enantioselective catalytic Pictet–Spengler reactions.
Fig. 4: Further reaction optimization and validation.

Similar content being viewed by others

Data availability

All data are available in the main text or the supplementary materials.

Code availability

The Python library used for SFC–MS peak deconvolution and analysis is available on Github under the GPL 3.0 license (https://github.com/corinwagen/chromatics).

References

  1. Knowles, W. S., Sabacky, M. J. & Büthe, H. Catalytic asymmetric hydrogenation employing a soluble, optically active, rhodium complex. Chem. Commun. (London) 1445–1446 (1968).

  2. Horner, L., Siegel, H. & Büthe, H. Asymmetric catalytic hydrogenation with an optically active phosphine–rhodium complex in homogeneous solution. Angew. Chem. Int. Ed. 7, 942 (1968).

    Article  CAS  Google Scholar 

  3. Jacobsen, E. N., Pfaltz, A. & Yamamoto, H. (eds) Comprehensive Asymmetric Catalysis Vols. 1–3 (Springer, 1999).

  4. Katsuki, T. & Sharpless, K. B. The first practical method for asymmetric epoxidation. J. Am. Chem. Soc. 102, 5974–5976 (1980).

    Article  CAS  Google Scholar 

  5. Jacobsen, E. N., Marko, I., Mungall, W. S., Schroeder, G. & Sharpless, K. B. Asymmetric dihydroxylation via ligand-accelerated catalysis. J. Am. Chem. Soc. 110, 1968–1970 (1988).

    Article  CAS  Google Scholar 

  6. Noyori, R. et al. Asymmetric hydrogenation of β-keto carboxylic esters. A practical, purely chemical access to β-hydroxy esters in high enantiomeric purity. J. Am. Chem. Soc. 109, 5856–5858 (1989).

    Article  Google Scholar 

  7. Hirao, A., Itsuno, S., Nakahama, S. & Yamazaki, N. Asymmetric reduction of aromatic ketones with chiral alkoxy-amineborane complexes. J. Chem. Soc. Chem. Commun. 315–317 (1981).

  8. Tokunaga, M., Larrow, J. F., Kakiuchi, F. & Jacobsen, E. N. Asymmetric catalysis with water: efficient kinetic resolution of terminal epoxides by means of catalytic hydrolysis. Science 277, 936–938 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Schmidt-Dannert, C. & Arnold, F. H. Directed evolution of industrial enzymes. Trends Biotechnol. 17, 135–136 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Gao, X. & Kagan, H. B. One-pot multi-substrate screening in asymmetric catalysis. Chirality 10, 120–124 (1998).

    Article  CAS  Google Scholar 

  11. Satyanarayana, T. & Kagan, H. B. The multi-substrate screening of asymmetric catalysis. Adv. Synth. Catal. 347, 737–748 (2005).

    Article  CAS  Google Scholar 

  12. Kim, H. et al. A multi-substrate screening approach for the identification of a broadly applicable Diels–Alder catalyst. Nat. Commun. 10, 770 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  13. Prieto Kullmer, C. N. et al. Accelerating reaction generality and mechanistic insight through additive mapping. Science 376, 532–539 (2022).

    Article  ADS  PubMed  Google Scholar 

  14. You, L., Zha, D. & Ansyln, E. V. Recent advances in supramolecular analytical chemistry using optical sensing. Chem. Rev. 115, 7840–7892 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Herrera, B. T., Pilicer, S. L., Ansyln, E. V., Joyce, L. A. & Wolf, C. Optical analysis of reaction yield and enantiomeric excess. A new paradigm ready for prime time. J. Am. Chem. Soc. 140, 10385–10401 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Jang, S. & Kim, H. Direct chiral 19F NMR analysis of fluorine-containing analytes and its application to simultaneous chiral analysis. Org. Lett. 22, 7804–7808 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Feagin, T. A., Olsen, D. P. V., Headman, Z. C. & Heemstra, J. M. High-throughput enantiopurity analysis using enantiomeric DNA-based sensors. J. Am. Chem. Soc. 137, 4198–4206 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Guo, J., Wu, J., Siuzdak, G. & Finn, M. G. Measurement of enantiomeric excess by kinetic resolution and mass spectrometry. Angew. Chem. Int. Ed. 38, 1755–1758 (1999).

    Article  CAS  Google Scholar 

  19. Reetz, M. T., Becker, M. H., Klein, H.-W. & Stöckigt, D. A method for high-throughput screening of enantioselective catalysts. Angew. Chem. Int. Ed. 38, 1758–1761 (1999).

    Article  CAS  Google Scholar 

  20. Abato, P. & Seto, C. T. EMDee: an enzymatic method for determining enantiomeric excess. J. Am. Chem. Soc. 123, 9206–9207 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Zhao, Y., Woo, G., Thomas, S., Semin, D. & Sandra, P. Rapid method development for chiral separation in drug discovery using sample pooling and supercritical fluid chromatography–mass spectrometry. J. Chrom. A 1003, 157–166 (2003).

    Article  CAS  Google Scholar 

  22. Barhate, C. L. et al. Ultrafast chiral separations for high throughput enantiopurity analysis. Chem. Commun. 53, 509–512 (2017).

    Article  CAS  Google Scholar 

  23. Shen, J., Ikai, T. & Okamoto, Y. Synthesis and application of immobilized polysaccharide-based chiral stationary phases for enantioseparation by high-performance liquid chromatography. J. Chromatogr. A 1363, 51–61 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Korch, K. M. et al. Selected ion monitoring using low-cost mass spectrum detectors provides a rapid, general, and accurate method for enantiomeric excess determination in high-throughput experimentation. ACS Catal. 12, 6737–6745 (2022).

    Article  CAS  Google Scholar 

  25. Payne, C. & Kass, S. R. How reliable are enantiomeric excess measurements obtained by chiral HPLC? ChemistrySelect 5, 1810–1817 (2020).

    Article  CAS  Google Scholar 

  26. Annesley, T. Ion suppression in mass spectrometry. Clin. Chem. 49, 1041–1044 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. George, R. et al. Enhancement and suppression of ionization in drug analysis using HPLC-MS/MS in support of therapeutic drug monitoring: a review of current knowledge of its minimization and assessment. Ther. Drug. Monit. 40, 1–8 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Cox, E. D. & Cook, J. M. The Pictet-Spengler condensation: a new direction for an old reaction. Chem. Rev. 95, 1797–1842 (1995).

    Article  CAS  Google Scholar 

  29. Stöckigt, J., Antonchick, A. P., Wu, F. & Walmann, H. The Pictet–Spengler reaction in nature and in organic chemistry. Angew. Chem. Int. Ed. 50, 8538–8564 (2011).

    Article  Google Scholar 

  30. Taylor, M. S. & Jacobsen, E. N. Highly enantioselective catalytic acyl-Pictet–Spengler reactions. J. Am. Chem. Soc. 126, 10558–10559 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Seayad, J., Seayad, A. M. & List, B. Catalytic asymmetric Pictet–Spengler reaction. J. Am. Chem. Soc. 128, 1086–1087 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Wanner, M. J., van der Haas, R. N. S., de Cuba, K. R., van Maarseveen, J. H. & Hiemstra, H. Catalytic asymmetric Pictet–Spengler reactions via sulfenyliminium ions. Angew. Chem. Int. Ed. 46, 7485–7487 (2007).

    Article  CAS  Google Scholar 

  33. Raheem, I. T., Thiara, P. V., Peterson, E. A. & Jacobsen, E. N. Enantioselective Pictet–Spengler-type cyclizations of hydroxylactams: H-bond donor catalysis by anion binding. J. Am. Chem. Soc. 129, 13404–13405 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Sewgobind, N. V. et al. Enantioselective BINOL-phosphoric acid catalyzed Pictet−Spengler reactions of N-benzyltryptamine. J. Org. Chem. 73, 6405–6408 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Huang, D., Xu, F., Lin, X. & Wang, Y. Highly enantioselective Pictet–Spengler reaction catalyzed by SPINOL‐phosphoric acids. Chem. Eur. J. 18, 3148–3152 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Mittal, N., Sun, D. X. & Seidel, D. Conjugate-base-stabilized Brønsted acids: catalytic enantioselective Pictet–Spengler reactions with unmodified tryptamine. Org. Lett. 16, 1012–1015 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Qi, L., Hou, H., Ling, F. & Zhong, W. The cinchona alkaloid squaramide catalyzed asymmetric Pictet–Spengler reaction and related theoretical studies. Org. Biomol. Chem. 16, 566–574 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Glinsky-Olivier, N., Yang, S., Retailleau, P., Gandon, V. & Guinchard, X. Enantioselective gold-catalyzed Pictet–Spengler reaction. Org. Lett. 21, 9446–9451 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Kondo, M. et al. Practical stereoselective synthesis of C3‐spirooxindole‐ and C2‐spiropseudoindoxyl‐pyrrolidines via organocatalyzed Pictet‐Spengler reaction/oxidative rearrangement sequence. Adv. Synth. Catal. 363, 2648–2663 (2021).

    Article  CAS  Google Scholar 

  40. Lynch-Colameta, T., Greta, S. & Snyder, S. A. Synthesis of aza-quaternary centers via Pictet–Spengler reactions of ketonitrones. Chem. Sci. 12, 6181–6187 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Muratore, M. E. et al. Enantioselective Brønsted acid-catalyzed N-acyliminium cyclization cascades. J. Am. Chem. Soc. 131, 10796–10797 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Klausen, R. S. & Jacobsen, E. N. Weak Brønsted acid-thiourea co-catalysis: enantioselective, catalytic protio-Pictet-Spengler reactions. Org. Lett. 11, 887–890 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nakamura, S., Matsuda, Y., Takehara, T. & Suzuki, T. Enantioselective Pictet−Spengler reaction of acyclic α‐ketoesters using chiral imidazoline-phosphoric acid catalysts. Org. Lett. 24, 1072–1076 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Chan, Y.-C., Sak, M. H., Frank, S. A. & Miller, S. J. Tunable and cooperative catalysis for enantioselective Pictet-Spengler reaction with varied nitrogen-containing heterocyclic carboxaldehydes. Angew. Chem. Int. Ed. 60, 24573–24581 (2021).

    Article  CAS  Google Scholar 

  45. McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at https://arxiv.org/abs/1802.03426 (2018).

Download references

Acknowledgements

We thank J. Gair, R. Klausen, R. Liu, A. Makarov, L. Nogle and E. Regalado for helpful discussions. This work was supported by a NIH grant GM043214 (E.N.J.), Dean’s Competitive Fund, Harvard University (E.N.J.) and NSF predoctoral fellowship DGE1745303 (C.C.W.).

Author information

Authors and Affiliations

Authors

Contributions

C.C.W., E.E.K. and E.N.J. conceived the work, C.C.W., S.E.M. and E.E.K. designed and validated the analytical method, C.C.W. and S.E.M. conducted the high-throughput screens. E.E.K. and E.N.J. directed the research, and all authors wrote and edited the manuscript.

Corresponding authors

Correspondence to Eugene E. Kwan or Eric N. Jacobsen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Andrea Gargano and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–6, including general information, details regarding analytical method development and validation text, application to the Pictet–Spengler reaction, References, NMR spectra data and further Supplementary Data. These sections include Supplementary Figs. 1–47 and Tables 1–10.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wagen, C.C., McMinn, S.E., Kwan, E.E. et al. Screening for generality in asymmetric catalysis. Nature 610, 680–686 (2022). https://doi.org/10.1038/s41586-022-05263-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05263-2

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing