Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Shape memory in self-adapting colloidal crystals

Abstract

Reconfigurable, mechanically responsive crystalline materials are central components in many sensing, soft robotic, and energy conversion and storage devices1,2,3,4. Crystalline materials can readily deform under various stimuli and the extent of recoverable deformation is highly dependent upon bond type1,2,5,6,7,8,9,10. Indeed, for structures held together via simple electrostatic interactions, minimal deformations are tolerated. By contrast, structures held together by molecular bonds can, in principle, sustain much larger deformations and more easily recover their original configurations. Here we study the deformation properties of well-faceted colloidal crystals engineered with DNA. These crystals are large in size (greater than 100 µm) and have a body-centred cubic (bcc) structure with a high viscoelastic volume fraction (of more than 97%). Therefore, they can be compressed into irregular shapes with wrinkles and creases, and, notably, these deformed crystals, upon rehydration, assume their initial well-formed crystalline morphology and internal nanoscale order within seconds. For most crystals, such compression and deformation would lead to permanent, irreversible damage. The substantial structural changes to the colloidal crystals are accompanied by notable and reversible optical property changes. For example, whereas the original and structurally recovered crystals exhibit near-perfect (over 98%) broadband absorption in the ultraviolet–visible region, the deformed crystals exhibit significantly increased reflection (up to 50% of incident light at certain wavelengths), mainly because of increases in their refractive index and inhomogeneity.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Design of single-crystal colloidal crystals engineered with DNA, and their deformation and recovery behaviour as characterized by optical microscopy.
Fig. 2: Characterization of the deformation and recovery behaviour of the crystals.
Fig. 3: Deformation and recovery behaviour of crystals characterized with single-crystal X-ray diffraction.
Fig. 4: Optical property measurements and simulations of the crystals.

Data availability

The data that support the findings of the study are available from the corresponding author, C.A.M., upon reasonable request.

Code availability

The MATLAB codes used to generate the model diffraction patterns in the Supplementary Information can be found in the Supplementary Data Files.

References

  1. Taniguchi, T. et al. Walking and rolling of crystals induced thermally by phase transition. Nat. Commun. 9, 538 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  2. Naumov, P., Chizhik, S., Panda, M. K., Nath, N. K. & Boldyreva, E. Mechanically responsive molecular crystals. Chem. Rev. 115, 12440–12490 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Mason, J. A. et al. Methane storage in flexible metal–organic frameworks with intrinsic thermal management. Nature 527, 357–361 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Koshima, H. Mechanically Responsive Materials for Soft Robotics (Wiley, 2019).

  5. Ahmed, E., Karothu, D. P., Warren, M. & Naumov, P. Shape-memory effects in molecular crystals. Nat. Commun. 10, 3723 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  6. Kobatake, S., Takami, S., Muto, H., Ishikawa, T. & Irie, M. Rapid and reversible shape changes of molecular crystals on photoirradiation. Nature 446, 778–781 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Naumov, P., Sahoo, S. C., Zakharov, B. A. & Boldyreva, E. V. Dynamic single crystals: Kinematic analysis of photoinduced crystal jumping (the photosalient effect). Angew. Chem. Int. Edn 52, 9990–9995 (2013).

    Article  CAS  Google Scholar 

  8. Rai, R., Krishnan, B. P. & Sureshan, K. M. Chirality-controlled spontaneous twisting of crystals due to thermal topochemical reaction. Proc. Natl Acad. Sci. USA 115, 2896–2901 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Skoko, Ž., Zamir, S., Naumov, P. & Bernstein, J. The thermosalient phenomenon. “Jumping crystals” and crystal chemistry of the anticholinergic agent oxitropium bromide. J. Am. Chem. Soc. 132, 14191–14202 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, L., Bailey, J. B., Subramanian, R. H., Groisman, A. & Tezcan, F. A. Hyperexpandable, self-healing macromolecular crystals with integrated polymer networks. Nature 557, 86–91 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pauling, L. The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry (Cornell Univ. Press, 1960).

  12. Hoffmann, R. Solids and Surfaces: A Chemist’s View of Bonding in Extended Structures (Wiley, 1989).

  13. Field, J. E. & Pickles, C. S. J. Strength, fracture and friction properties of diamond. Diamond Relat. Mater. 5, 625–634 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Desiraju, G. R. & Steiner, T. The Weak Hydrogen Bond: In Structural Chemistry and Biology (Oxford Univ. Press, 2001).

  15. Maldovan, M. Phonon wave interference and thermal bandgap materials. Nat. Mater. 14, 667–674 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Laramy, C. R., O’Brien, M. N. & Mirkin, C. A. Crystal engineering with DNA. Nat. Rev. Mater. 4, 201–224 (2019).

    Article  ADS  CAS  Google Scholar 

  17. Diercks, C. S. & Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 355, eaal1585 (2017).

    Article  PubMed  Google Scholar 

  18. Leunissen, M. E. et al. Ionic colloidal crystals of oppositely charged particles. Nature 437, 235–240 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Egan, P., Sinko, R., LeDuc, P. R. & Keten, S. The role of mechanics in biological and bio-inspired systems. Nat. Commun. 6, 7418 (2015).

    Article  ADS  PubMed  Google Scholar 

  21. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    ADS  CAS  PubMed  Google Scholar 

  22. Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Jones, M. R., Seeman, N. C. & Mirkin, C. A. Programmable materials and the nature of the DNA bond. Science 347, 1260901 (2015).

    Article  PubMed  Google Scholar 

  25. Lin, H. et al. Clathrate colloidal crystals. Science 355, 931–935 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. He, M. et al. Colloidal diamond. Nature 585, 524–529 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Liu, E. J., Cashman, K. V. & Rust, A. C. Optimising shape analysis to quantify volcanic ash morphology. GeoResJ 8, 14–30 (2015).

    Article  Google Scholar 

  28. Lequieu, J., Córdoba, A., Hinckley, D. & de Pablo, J. J. Mechanical response of DNA–nanoparticle crystals to controlled deformation. ACS Central Science 2, 614–620 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lewis, D. J., Carter, D. J. D. & Macfarlane, R. J. Using DNA to control the mechanical response of nanoparticle superlattices. J. Am. Chem. Soc. 142, 19181–19188 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Anderson, J. A., Glaser, J. & Glotzer, S. C. HOOMD-blue: a Python package for high-performance molecular dynamics and hard particle Monte Carlo simulations. Comput. Mater. Sci. 173, 109363 (2020).

    Article  CAS  Google Scholar 

  31. Chu, X. & Tanner, B. K. Bragg case X-ray Moiré patterns observed in GaAlAs/GaAs laser structures. Mater. Lett. 5, 153–155 (1987).

    Article  CAS  Google Scholar 

  32. Lang, A. R. X-ray moiré topography of lattice defects in quartz. Nature 220, 652–657 (1968).

    Article  ADS  CAS  Google Scholar 

  33. Smith, D. R., Vier, D. C., Koschny, T. & Soukoulis, C. M. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E 71, 036617 (2005).

    Article  ADS  CAS  Google Scholar 

  34. Chýlek, P., Grams, G. W. & Pinnick, R. G. Light scattering by irregular randomly oriented particles. Science 193, 480–482 (1976).

    Article  ADS  Google Scholar 

  35. De Fazio, A. F. et al. Light-induced reversible DNA ligation of gold nanoparticle superlattices. ACS Nano 13, 5771–5777 (2019).

    Article  PubMed  Google Scholar 

  36. Lee, S., Zheng, C. Y., Bujold, K. E. & Mirkin, C. A. A cross-linking approach to stabilizing stimuli-responsive colloidal crystals engineered with DNA. J. Am. Chem. Soc. 141, 11827–11831 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sunyer, R., Jin, A. J., Nossal, R. & Sackett, D. L. Fabrication of hydrogels with steep stiffness gradients for studying cell mechanical response. PLoS ONE 7, e46107 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Park, J. Y. et al. Increased poly(dimethylsiloxane) stiffness improves viability and morphology of mouse fibroblast cells. BioChip J. 4, 230–236 (2010).

    Article  CAS  Google Scholar 

  40. Towns, J. et al. XSEDE: accelerating scientific discovery. Comput. Sci. Eng. 16, 62–74 (2014).

    Article  Google Scholar 

  41. Chandler, D., Weeks, J. D. & Andersen, H. C. Van der Waals picture of liquids, solids, and phase transformations. Science 220, 787–794 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Wang, S. et al. Colloidal crystal “alloys”. J. Am. Chem. Soc. 141, 20443–20450 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by Air Force Office of Scientific Research FA9550-17-1-0348, FA9550-16-1-0150 and FA9550-18-1-0493. It was also supported as part of the Center for Bio-Inspired Energy Science, an Energy Frontier Research Center (CBES) funded by the US Department of Energy, Office of Science, Basic Energy Sciences award DE-SC0000989. This work made use of the EPIC facility of Northwestern University’s NUANCE Center, which has received support from the SHyNE Resource (NSF grant no. ECCS-2025633), the International Institute for Nanotechnology (IIN) and Northwestern’s MRSEC program (NSF grant no. DMR-1720139); the IIN; the Keck Foundation; and the State of Illinois, through the IIN. This research used resources of the Advanced Photon Source, a US Department of Energy Office of Science User Facility operated for the US Department of Energy Office of Science by Argonne National Laboratory under contract no. DE‐AC02‐06CH11357. X-ray diffraction experiments were carried out at the Dupont–Northwestern–Dow Collaborative Access Team beamline at Sector 5, 12-ID-B, and sector 21 at the Advanced Photon Source at Argonne National Laboratory. H.A.C. acknowledges support by the National Science Foundation Graduate Research Fellowship Program grant (DGE-1842165). K.A. acknowledges partial support from the Office of Naval Research Young Investigator Program (ONR-YIP) Award (no. N00014-17-1-2425). S.L. (UM) and S.C.G. acknowledge support from CBES (grant no. DE-SC0000989). MD simulations were supported in part through computational resources and services supported by Advanced Research Computing at the University of Michigan, Ann Arbor and also used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant no. ACI-1548562 and XSEDE award no. DMR 140129.

Author information

Authors and Affiliations

Authors

Contributions

C.A.M. and Seungkyu Lee conceived the work and designed experiments. Seungkyu Lee and H.A.C. synthesized the single crystals. Seungkyu Lee conducted the experiments to determine the mechanical behaviours of the crystals. Sangmin Lee and S.C.G. designed the MD simulation studies. Sangmin Lee developed the model, performed the MD simulations and simulated diffraction pattern calculations. Seungkyu Lee and B.L. collected the X-ray diffraction data and analysed the results. E.O. conducted the nanoindentation, Oligreen and inductively coupled plasma (ICP) experiments and analysed the results. Seungkyu Lee, W.H. and K.A. measured the optical properties of the crystals and analysed the results. All authors wrote and edited the manuscript together.

Corresponding author

Correspondence to Chad A. Mirkin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Melting temperature curves for the synthesis of the crystals and their SAXS patterns.

a, Melting temperature curves for solutions of A and B-type PAEs. A cooling rate of 0.1 °C/120 min was applied over the crystallization temperature range (shaded region) that encompasses the aggregation temperatures of the PAEs. b,c, SAXS patterns of BCC crystals (b) with 5-nm PAEs and (c) with 10-nm PAEs. In case of the crystals prepared with 5-nm PAEs, a smaller fraction of the crystals that have a slightly larger unit cell parameter, 292.9 Å, were detected in the diffraction profile. The two phases are likely to occur during crystallization owing to the polydispersity of the 5-nm particle cores. Size exclusion occurs more readily during crystallization of the 5-nm PAEs compared to the 10-nm PAEs, as a result of the larger relative size difference between small and large particles in the 5-nm batch. This is a well-documented behaviour for this class of materials42.

Extended Data Fig. 2 Crystal size dependency on the cooling rate during the crystallization process.

a, b, Optical microscopy images of crystals assembled from 5-nm PAEs at the cooling rates indicated (scale bar: 50 µm), and crystal size distribution histogram. Inset, average crystal sizes as a function of the cooling rate. c, d, Optical microscopy images of crystals assembled from 10-nm PAEs at the cooling rates indicated (scale bar: 50 µm), and crystal size distribution histogram. e, Optical microscopy images of >100-µm single crystals assembled from 5-nm and 10-nm PAEs, respectively.

Extended Data Fig. 3 Electron microscope images of the dehydrated crystals.

a,b, Crystals assembled from (a) 5- and (b) 10-nm PAEs. Scale bars: 5 µm.

Extended Data Fig. 4 SXRD data of the intact crystals assembled with 5- and 10-nm PAEs.

a, A crystal assembled with 5-nm PAEs (a: 223 Å). b, A crystal assembled with 10-nm PAEs (a: 274 Å). In the high-angle area of both data, FCC structure powder rings from randomly oriented AuNPs in the crystals were observed. The majority of the reflections of the BCC superlattices are blocked by the beam stop owing to the typical short sample-detector distance of the instrument configuration of a wide-angle beamline.

Extended Data Fig. 5 A goniometer installed on the SAXS beamline.

a, A single crystal mounted on a fibre loop. b, Tilt motor to orient the crystal. c, Y-axis control motor. d, X-axis control motor. e, X-ray beam collimator.

Extended Data Fig. 6 Single crystal X-ray diffraction data of a crystal assembled with 10-nm PAEs.

The SXRD patterns were collected during a dehydration-rehydration cycle. High-order, weakly observable reflections obtained from intact and rehydrated crystals are highlighted with white circles in the figure insets.

Extended Data Fig. 7 Three-dimensionally reconstructed diffraction patterns of the crystals during a deformation and recovery cycle.

a,b, The unit cell parameters were determined by overlapping the simulated BCC reciprocal matrixes (grey dotted circles) with the reconstructed diffraction patterns of the crystals assembled with (a) 5-nm PAEs and (b) 10-nm PAEs, respectively. In the case of heavily deformed crystals, precise unit cell parameter determination was impossible because of the limited number of reflections. The unit cell parameters of the heavily deformed crystals were estimated by measuring the average distances between the centers of (110) reflections and the origin of the reciprocal space and converting the average distances to the direct space values.

Extended Data Fig. 8 Deformation of a crystal with relatively stiff PAE-PAE interactions.

a, MD simulation snapshot after the crystal deformation. The crystal was fractured into many domains with different sizes and orientations. b, Effective pair potential between A-type PAEs and B-type PAEs in this model (Supplementary Methods 3). c, Diffraction pattern obtained from the (111) direction of the fractured crystal.

Extended Data Fig. 9 Optical property changes of the crystals assembled with 10-nm PAEs.

a, Schematic view of the simulation region used in the FDTD simulation, highlighted by the bounding box. b, Bright-field optical microscope images of the crystals measured in situ and absorption spectra of the intact and rehydrated crystals assembled with 10-nm PAEs. c, Enhanced reflection of the deformed crystals. Reflections of randomly chosen dehydrated crystals are indicated in pale blue. d, Simulated effective index plot for the crystals assembled with 10-nm PAEs, considering only contraction, without distortion, of the unit cells.

Supplementary information

Supplementary Information

Supplementary Methods 1–6, Figs. 1–16, Tables 1–11 and references.

Supplementary Data File 1

Source MATLAB code used to generate the diffraction fringes.

Supplementary Data File 2

Source MATLAB code used to plot the diffraction data.

Supplementary Video 1

Colloidal crystals composed of PAEs during dehydration-rehydration cycles. Crystals composed of 5 nm PAEs were dehydrated and rehydrated on glass slides and their response was recorded by an optical microscope. Some crystals were able to recover their initial morphology even after six dehydration–rehydration cycles.

Supplementary Video 2

Reflections of dehydrated crystals during single-crystal X-ray diffraction. Dehydrated crystals composed of 5 nm PAEs frequently exhibit sharp lines and streaks in their (110) reflections during single-crystal X-ray diffraction experiments.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Calcaterra, H.A., Lee, S. et al. Shape memory in self-adapting colloidal crystals. Nature 610, 674–679 (2022). https://doi.org/10.1038/s41586-022-05232-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05232-9

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing