Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Photonic topological insulator induced by a dislocation in three dimensions

Abstract

The hallmark of topological insulators (TIs) is the scatter-free propagation of waves in topologically protected edge channels1. This transport is strictly chiral on the outer edge of the medium and therefore capable of bypassing sharp corners and imperfections, even in the presence of substantial disorder. In photonics, two-dimensional (2D) topological edge states have been demonstrated on several different platforms2,3,4 and are emerging as a promising tool for robust lasers5, quantum devices6,7,8 and other applications. More recently, 3D TIs were demonstrated in microwaves9 and  acoustic waves10,11,12,13, where the topological protection in the latter  is induced by dislocations. However, at optical frequencies, 3D photonic TIs have so far remained out of experimental reach. Here we demonstrate a photonic TI with protected topological surface states in three dimensions. The topological protection is enabled by a screw dislocation. For this purpose, we use the concept of synthetic dimensions14,15,16,17 in a 2D photonic waveguide array18 by introducing a further modal dimension to transform the system into a 3D topological system. The lattice dislocation endows the system with edge states propagating along 3D trajectories, with topological protection akin to strong photonic TIs19,20. Our work paves the way for utilizing 3D topology in photonic science and technology.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: A weak TI versus a 3D TI with a dislocation in bosonic systems.
Fig. 2: Weak TI with photonic waveguide arrays.
Fig. 3: 3D TI with a dislocation.
Fig. 4: Experimentally viewed evolution of edge-wave packets in the 3D synthetic-space TI.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  ADS  PubMed  Google Scholar 

  2. Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nat. Photon. 7, 1001–1005 (2013).

    Article  ADS  CAS  Google Scholar 

  5. Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).

    Article  PubMed  Google Scholar 

  6. Barik, S. et al. A topological quantum optics interface. Science 359, 666–668 (2018).

    Article  ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  7. Blanco-Redondo, A., Bell, B., Oren, D., Eggleton, B. J. & Segev, M. Topological protection of biphoton states. Science 362, 568–571 (2018).

    Article  ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  8. Wang, M. et al. Topologically protected entangled photonic states. Nanophotonics 8, 1327–1335 (2019).

    Article  Google Scholar 

  9. Yang, Y. et al. Realization of a three-dimensional photonic topological insulator. Nature 565, 622–626 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Xue, H. et al. Observation of dislocation-induced topological modes in a three-dimensional acoustic topological insulator. Phys. Rev. Lett. 127, 214301 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Ye, L. et al. Topological dislocation modes in three-dimensional acoustic topological insulators. Nat. Commun. 13, 508 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, W., Chen, Z.-G. & Ma, G. Synthetic three-dimensional Z×Z2 topological insulator in an elastic metacrystal. Phys. Rev. Lett. 127, 214302 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Nayak, A. K. et al. Resolving the topological classification of bismuth with topological defects. Sci. Adv. 5, eaax6996 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Boada, O., Celi, A., Latorre, J. I. & Lewenstein, M. Quantum simulation of an extra dimension. Phys. Rev. Lett. 108, 133001 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Luo, X.-W. et al. Quantum simulation of 2D topological physics in a 1D array of optical cavities. Nat. Commun. 6, 7704 (2015).

    Article  ADS  PubMed  Google Scholar 

  16. Ozawa, T., Price, H. M., Goldman, N., Zilberberg, O. & Carusotto, I. Synthetic dimensions in integrated photonics: from optical isolation to four-dimensional quantum Hall physics. Phys. Rev. A 93, 43827 (2016).

    Article  ADS  Google Scholar 

  17. Yuan, L., Shi, Y. & Fan, S. Photonic gauge potential in a system with a synthetic frequency dimension. Opt. Lett. 41, 741–744 (2016).

    Article  ADS  PubMed  Google Scholar 

  18. Lustig, E. et al. Photonic topological insulator in synthetic dimensions. Nature 567, 356–360 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Ran, Y., Zhang, Y. & Vishwanath, A. One-dimensional topologically protected modes in topological insulators with lattice dislocations. Nat. Phys. 5, 298–303 (2009).

    Article  CAS  Google Scholar 

  20. Lu, L. & Wang, Z. Topological one-way fiber of second Chern number. Nat. Commun. 9, 5384 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Malkova, N., Hromada, I., Wang, X., Bryant, G. & Chen, Z. Observation of optical Shockley-like surface states in photonic superlattices. Opt. Lett. 34, 1633–1635 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).

    Article  ADS  PubMed  Google Scholar 

  23. Ringel, Z., Kraus, Y. E. & Stern, A. Strong side of weak topological insulators. Phys. Rev. B 86, 45102 (2012).

    Article  ADS  Google Scholar 

  24. Slobozhanyuk, A. et al. Three-dimensional all-dielectric photonic topological insulator. Nat. Photon. 11, 130–136 (2017).

    Article  ADS  CAS  Google Scholar 

  25. Lin, Q., Sun, X.-Q., Xiao, M., Zhang, S.-C. & Fan, S. Constructing three-dimensional photonic topological insulator using two-dimensional ring resonator lattice with a synthetic frequency dimension. Sci. Adv. 4, eaat2774 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Khanikaev, A. B. et al. Photonic topological insulators. Nat. Mater. 12, 233–239 (2012).

    Article  ADS  PubMed  Google Scholar 

  27. Teo, J. C. Y. & Kane, C. L. Topological defects and gapless modes in insulators and superconductors. Phys. Rev. B 82, 115120 (2010).

    Article  ADS  Google Scholar 

  28. Hamasaki, H., Tokumoto, Y. & Edagawa, K. Dislocation conduction in Bi-Sb topological insulators. Appl. Phys. Lett. 110, 92105 (2017).

    Article  Google Scholar 

  29. Kraus, Y. E., Lahini, Y., Ringel, Z., Verbin, M. & Zilberberg, O. Topological states and adiabatic pumping in quasicrystals. Phys. Rev. Lett. 109, 106402 (2012).

    Article  ADS  PubMed  Google Scholar 

  30. Jukić, D. & Buljan, H. Four-dimensional photonic lattices and discrete tesseract solitons. Phys. Rev. A 87, 13814 (2013).

    Article  ADS  Google Scholar 

  31. Noh, J. et al. Experimental observation of optical Weyl points and Fermi arc-like surface states. Nat. Phys. 13, 611–617 (2017).

    Article  CAS  Google Scholar 

  32. Maczewsky, L. J. et al. Synthesizing multi-dimensional excitation dynamics and localization transition in one-dimensional lattices. Nat. Photon. 14, 76–81 (2020).

  33. Zilberberg, O. et al. Photonic topological boundary pumping as a probe of 4D quantum Hall physics. Nature 553, 59–62 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Stuhl, B. K., Lu, H.-I., Aycock, L. M., Genkina, D. & Spielman, I. B. Visualizing edge states with an atomic Bose gas in the quantum Hall regime. Science 349, 1514–1518 (2015).

    Article  ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  35. Mancini, M. et al. Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. Science 349, 1510–1513 (2015).

    Article  ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  36. Dutt, A. et al. A single photonic cavity with two independent physical synthetic dimensions. Science 367, 59–64 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Rudner, M. S., Lindner, N. H., Berg, E. & Levin, M. Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems. Phys. Rev. X 3, 31005 (2013).

    CAS  Google Scholar 

  38. Maczewsky, L. J., Zeuner, J. M., Nolte, S. & Szameit, A. Observation of photonic anomalous Floquet topological insulators. Nat. Commun. 8, 13756 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mukherjee, S. et al. Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice. Nat. Commun. 8, 13918 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Biesenthal, T., Kremer, M., Heinrich, M. & Szameit, A. Experimental realization of PT-symmetric flat bands. Phys. Rev. Lett. 123, 183601 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Celi, A. et al. Synthetic gauge fields in synthetic dimensions. Phys. Rev. Lett. 112, 043001 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Lustig, E. et al. in Conference on Lasers and Electro-Optics, paper FW3A.2 (Optical Society of America, 2020).

  43. Leykam, D., Rechtsman, M. C. & Chong, Y. D. Anomalous topological phases and unpaired Dirac cones in photonic Floquet topological insulators. Phys. Rev. Lett. 117, 13902 (2016).

    Article  ADS  Google Scholar 

  44. Szameit, A. et al. Discrete optics in femtosecond-laser-written photonic structures. J. Phys. B At. Mol. Opt. Phys. 43, 163001 (2010).

    Article  ADS  Google Scholar 

  45. Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  ADS  CAS  Google Scholar 

  47. Moore, J. E. & Balents, L. Topological invariants of time-reversal-invariant band structures. Phys. Rev. B 75, 121306 (2007).

    Article  ADS  Google Scholar 

  48. Hsieh, D. et al. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970–974 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Roy, R. Topological phases and the quantum spin Hall effect in three dimensions. Phys. Rev. B 79, 195322 (2009).

    Article  ADS  Google Scholar 

  50. Bi, R., Yan, Z., Lu, L. & Wang, Z. Topological defects in Floquet systems: anomalous chiral modes and topological invariant. Phys. Rev. B 95, 161115 (2017).

    Article  ADS  Google Scholar 

  51. Nag, T. & Roy, B. Anomalous and normal dislocation modes in Floquet topological insulators. Commun. Phys. 4, 157 (2021).

    Article  Google Scholar 

  52. Harari, G. et al. in Conference on Lasers and Electro-Optics, paper FM3A.3 (Optical Society of America, 2016).

  53. Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358, 636–640 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Harari, G. et al. Topological insulator laser: theory. Science 359, eaar4003 (2018).

    Article  PubMed  Google Scholar 

  55. Dikopoltsev, A. et al. Topological insulator vertical-cavity laser array. Science 373, 1514–1517 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Mittal, S., Orre, V. V. & Hafezi, M. Topologically robust transport of entangled photons in a 2D photonic system. Opt. Express 24, 15631–15641 (2016).

    Article  ADS  PubMed  Google Scholar 

  57. Dai, T. et al. Topologically protected quantum entanglement emitters. Nat. Photon. 16, 248–257 (2022).

    Article  ADS  CAS  Google Scholar 

  58. Christodoulides, D. N. & Joseph, R. I. Discrete self-focusing in nonlinear arrays of coupled waveguides. Opt. Lett. 13, 794–796 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Schwartz, T., Bartal, G., Fishman, S. & Segev, M. Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446, 52–55 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Afzal, S. & Van, V. Trapping light in a Floquet topological photonic insulator by Floquet defect mode resonance. APL Photonics 6, 116101 (2021).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank C. Otto for preparing the high-quality fused silica samples used for the inscription of all photonic structures in this work. The Technion team gratefully acknowledges the support of an Advanced Grant from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 789339) and the support of a research grant from the Air Force Office of Scientific Research (AFOSR) of the USA. The Rostock team gratefully acknowledges the support of the Deutsche Forschungsgemeinschaft (grants SCHE 612/6-1, SZ 276/12-1, BL 574/13-1, SZ 276/15-1, SZ 276/20-1 and SFB 1477 ‘Light-Matter Interactions at Interfaces’, project number 441234705) and the Alfried Krupp von Bohlen und Halbach Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Eran Lustig and Lukas J. Maczewsky contributed equally to this work. All authors contributed substantially to this work.

Corresponding author

Correspondence to Mordechai Segev.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Avik Dutt, Alexander Khanikaev and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Unit cell of the 3D photonic TI.

a, The dashed green line is the projection of the trajectory of the two columns of waveguides (blue and red) on the x–y plane. The directions of the helical motion follow the green arrowheads. The two columns are presented here at their closest proximity to one another along the trajectory. The size of each waveguide indicates the different ‘depth’ of refractive index (the largest circle is the deepest waveguide). b, Coupling between adjacent waveguides as a function of their x separation, obtained by different speeds of the laser-writing process, which translates into different refractive index contrast. c, Same as a but at the dislocation, at which the shift creates coupling between localized modes of different 2D layers.

Extended Data Fig. 2 Spectrum of the topological surface states and their typical structure in the presence of intermodal coupling.

a, The amplitude as a function of location and mode in the 3D synthetic space without dislocation for moderate intermodal coupling of 20% of the spatial coupling. b, Same as a but for a lattice with a dislocation. c,d, Floquet spectrum as a function of the state number of a and b, respectively. eh, Same as ad but for strong intermodal coupling of 60% of the spatial coupling.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lustig, E., Maczewsky, L.J., Beck, J. et al. Photonic topological insulator induced by a dislocation in three dimensions. Nature 609, 931–935 (2022). https://doi.org/10.1038/s41586-022-05129-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05129-7

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing