Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Extended Bose–Hubbard model with dipolar excitons

Abstract

The Hubbard model constitutes one of the most celebrated theoretical frameworks of condensed-matter physics. It describes strongly correlated phases of interacting quantum particles confined in lattice potentials1,2. For bosons, the Hubbard Hamiltonian has been deeply scrutinized for short-range on-site interactions3,4,5,6. However, accessing longer-range couplings has remained elusive experimentally7. This marks the frontier towards the extended Bose–Hubbard Hamiltonian, which enables insulating ordered phases at fractional lattice fillings8,9,10,11,12. Here we implement this Hamiltonian by confining semiconductor dipolar excitons in an artificial two-dimensional square lattice. Strong dipolar repulsions between nearest-neighbour lattice sites then stabilize an insulating state at half filling. This characteristic feature of the extended Bose–Hubbard model exhibits the signatures theoretically expected for a chequerboard spatial order. Our work thus highlights that dipolar excitons enable controlled implementations of boson-like arrays with strong off-site interactions, in lattices with programmable geometries and more than 100 sites.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Strongly interacting dipolar excitons in a lattice.
Fig. 2: Incompressible phases at unity and half filling.
Fig. 3: Melting of insulating phases.

Data availability

 Source data are provided with this paper.

References

  1. Salomon, C. et al. Many-Body Physics with Ultracold Gases: Lecture Notes of the Les Houches Summer School: Volume 94, July 2010 (Oxford Univ. Press, 2012).

  2. Arovas, D. P., Berg, E., Kivelson, S. A. & Raghu, S. The Hubbard model. Ann. Rev. Condens. Matter Phys. 13, 239–274 (2022).

    Article  Google Scholar 

  3. Greiner, M., Mandel, O., Esslinger, T., Haensch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

    Article  ADS  CAS  Google Scholar 

  4. Gemelke, N., Zhang, X., Hung, C. L. & Chin, C. In situ observation of incompressible Mott-insulating domains in ultracold atomic gases. Nature 460, 995–998 (2009).

    Article  ADS  CAS  Google Scholar 

  5. Bakr, W. S. et al. Probing the superfluid-to-Mott insulator transition at the single-atom level. Science 329, 547–550 (2010).

    Article  ADS  CAS  Google Scholar 

  6. Sherson, J. et al. Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68–72 (2010).

    Article  ADS  CAS  Google Scholar 

  7. Baier, S. et al. Extended Bose–Hubbard models with ultracold magnetic atoms. Science 352, 201–205 (2016).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  8. Batrouni, G. G., Scalettar, R. T., Zimanyi, G. T. & Kampf, A. P. Supersolids in the Bose–Hubbard Hamiltonian. Phys. Rev. Lett. 74, 2527 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Hebert, F. et al. Quantum phase transitions in the two-dimensional hardcore boson model. Phys. Rev. B 65, 014513 (2001).

    Article  ADS  Google Scholar 

  10. Goral, K., Santos, L. & Lewenstein, M. Quantum phases of dipolar bosons in optical lattices. Phys. Rev. Lett. 88, 170406 (2002).

    Article  ADS  CAS  Google Scholar 

  11. Baranov, M. A., Dalmonte, M., Pupillo, G. & Zoller, P. Condensed matter theory of dipolar quantum gases. Chem. Rev. 112, 5012–5061 (2012).

    Article  CAS  Google Scholar 

  12. Dutta, O. et al. Non-standard Hubbard models in optical lattices: a review. Rep. Prog. Phys. 78, 066001 (2015).

    Article  ADS  Google Scholar 

  13. Trefzger, C., Menotti, C., Capogrosso-Sansone, B. & Lewenstein, M. Ultracold dipolar gases in optical lattices. J. Phys. B 44, 193001 (2010).

    Article  ADS  Google Scholar 

  14. Capogrosso-Sansone, B., Trefzger, C., Lewenstein, M., Zoller, P. & Pupillo, G. Quantum phases of cold polar molecules in 2D optical lattices. Phys. Rev. Lett. 104, 125301 (2010).

    Article  ADS  CAS  Google Scholar 

  15. Fradkin, E., Kivelson, S. A. & Tranquada, J. M. Colloquium: theory of intertwined orders in high temperature superconductors. Rev. Mod. Phys. 87, 457 (2015).

    Article  ADS  CAS  Google Scholar 

  16. Wise, W. et al. Charge-density-wave origin of cuprate checkerboard visualized by scanning tunnelling microscopy. Nat. Phys. 4, 696–699 (2008).

    Article  CAS  Google Scholar 

  17. Jin, C. et al. Stripe phases in WSe2/WS2 moiré superlattices. Nat. Mater. 20, 940–944 (2021).

    Article  ADS  CAS  Google Scholar 

  18. Lagoin, C., Suffit, S., Baldwin, K., Pfeiffer, L. & Dubin, F. Mott insulator of strongly interacting two-dimensional excitons. Nat. Phys. 18, 149–153 (2022).

    Article  CAS  Google Scholar 

  19. Lackner, L. et al. Tunable exciton-polaritons emerging from WS2 monolayer excitons in a photonic lattice at room temperature. Nat. Commun. 12, 4933 (2021).

    Article  ADS  CAS  Google Scholar 

  20. Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

    Article  ADS  CAS  Google Scholar 

  21. Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    Article  ADS  CAS  Google Scholar 

  22. Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

    Article  ADS  CAS  Google Scholar 

  23. Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).

    Article  ADS  CAS  Google Scholar 

  24. Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    Article  CAS  Google Scholar 

  25. Gu, J. et al. Dipolar excitonic insulator in a moiré lattice. Nat. Phys. 18, 395–400 (2022).

    Article  CAS  Google Scholar 

  26. Remeika, M., Fogler, M. M., Butov, L. V., Hanson, M. & Gossard, A. C. Two-dimensional electrostatic lattices for indirect excitons. Appl. Phys. Lett. 100, 061103 (2012).

    Article  ADS  Google Scholar 

  27. Lagoin, C. et al. Microscopic lattice for two-dimensional dipolar excitons. Phys. Rev. B 102, 245428 (2020).

    Article  ADS  CAS  Google Scholar 

  28. Lagoin, C. et al. Quasicondensation of bilayer excitons in a periodic potential. Phys. Rev. Lett 126, 067404 (2021).

    Article  ADS  CAS  Google Scholar 

  29. Combescot, M., Combescot, R. & Dubin, F. Bose–Einstein condensation of indirect excitons: a review. Rep. Prog. Phys. 80, 066401 (2017).

    Article  Google Scholar 

  30. High, A. A. et al. Trapping indirect excitons in a GaAs quantum-well structure with a diamond-shaped electrostatic trap. Phys. Rev. Lett. 103, 087403 (2009).

    Article  ADS  CAS  Google Scholar 

  31. Winbow, A. G. et al. Electrostatic conveyer for excitons. Phys. Rev. Lett. 106, 196806 (2011).

    Article  ADS  CAS  Google Scholar 

  32. Rosenberg, I., Mazuz-Harpaz, Y., Rapaport, R., West, K. & Pfeiffer, L. Electrically controlled mutual interactions of flying waveguide dipolaritons. Phys. Rev. B 93, 195151 (2016).

    Article  ADS  Google Scholar 

  33. Götting, N., Lohof, F. & Gies, C. Moiré-Bose-Hubbard model for interlayer excitons in twisted transition metal dichalcogenide heterostructures. Phys. Rev. B 105, 165419 (2022).

    Article  ADS  Google Scholar 

  34. Bissbort, U., Deuretzbacher, F. & Hofstetter, W. Effective multibody-induced tunneling and interactions in the Bose–Hubbard model of the lowest dressed band of an optical lattice. Phys. Rev. A 86, 023617 (2012).

    Article  ADS  Google Scholar 

  35. Schmid, G., Todo, S., Troyer, M. & Dorneich, A. Finite-temperature phase diagram of hard-core bosons in two dimensions. Phys. Rev. Lett. 88, 167208 (2002).

    Article  ADS  Google Scholar 

  36. Mahmud, K. W. et al. Finite-temperature study of bosons in a two-dimensional optical lattice. Phys. Rev. B 84, 054302 (2011).

    Article  ADS  Google Scholar 

  37. Gerbier, F. Boson Mott insulators at finite temperatures. Phys. Rev. Lett. 99, 120405 (2007).

    Article  ADS  Google Scholar 

  38. DeMarco, B., Lannert, C., Vishveshwara, S. & Wei, T.-C. Structure and stability of Mott-insulator shells of bosons trapped in an optical lattice. Phys. Rev. A 71, 063601 (2005).

    Article  ADS  Google Scholar 

  39. Scholl, P. et al. Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms. Nature 595, 233–238 (2021).

    Article  ADS  CAS  Google Scholar 

  40. Alloing, M., Lemaitre, A., Galopin, E. & Dubin, F. Nonlinear dynamics and inner-ring photoluminescence pattern of indirect excitons. Phys. Rev. B 85, 245106 (2012).

    Article  ADS  Google Scholar 

  41. Beian, M. et al. Spectroscopic signatures for the dark Bose–Einstein condensation of spatially indirect excitons. EuroPhys. Lett. 119, 37004 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

C.L. and F.D. thank S. Suffit for support during sample fabrication, together with A. Reserbat-Plantey and B. Urbaszek for a critical reading of the manuscript. Work at CNRS was funded by IXTASE from the French Agency for Research (ANR-20-CE30-0032-01). The work at Princeton University (L.P. and K.B.) was funded by the Gordon and Betty Moore Foundation through the EPiQS initiative grant GBMF 9545, and by the National Science Foundation MRSEC grant DMR 1420541. Research at ICFO acknowledges support from ERC AdG NOQIA; Agencia Estatal de Investigación (R&D project CEX2019-000910-S, funded by MCIN/ AEI/10.13039/501100011033, Plan National FIDEUA PID2019-106901GB-I00, FPI, QUANTERA MAQS PCI2019-111828-2, QUANTERA DYNAMITE PCI2022-132919, Proyectos de I+D+I "Retos Colaboración” QUSPIN RTC2019-007196-7); MCIN via European Union NextGenerationEU (PRTR); Fundació Cellex; Fundació Mir-Puig; Generalitat de Catalunya through the European Social Fund FEDER and CERCA programme (AGAUR grant no. 2017 SGR 134, QuantumCAT U16-011424, co-funded by ERDF Operational Programme of Catalonia 2014-2020); the computer resources and technical support at Barcelona Supercomputing Center MareNostrum (FI-2022-1-0042); EU Horizon 2020 FET-OPEN OPTOlogic (grant no 899794); National Science Centre, Poland (Symfonia grant no. 2016/20/W/ST4/00314); European Union’s Horizon 2020 research and innovation programme under the Marie-Skłodowska-Curie grant agreement no. 101029393 (STREDCH) and no. 847648 (‘La Caixa’ Junior Leaders fellowships ID100010434: LCF/BQ/PI19/11690013, LCF/BQ/PI20/11760031, LCF/BQ/PR20/11770012, LCF/BQ/PR21/11840013). R.W.C. acknowledges support from the Polish National Science Centre (NCN) under Maestro grant no. DEC2019/34/A/ST2/00081.

Author information

Authors and Affiliations

Authors

Contributions

K.B. and L.P. realized the GaAs bilayer and C.L. and F.D. designed and fabricated the gate electrodes to realize the 250 nm period electrostatic lattice. C.L. and F.D. performed all experiments and data analysis. C.L., U.B., T.G, R.W.C., T.S., M.L., M.H. and F.D. contributed to the theoretical developments. All authors contributed to writing the manuscript. F.D. directed the project.

Corresponding author

Correspondence to F. Dubin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Theoretical hallmarks of CB order.

a, Lowest band structure factor S1(k) at T=100 mK obtained by exact diagonalisation of a 8 site square lattice (Betts cluster) with periodic boundary conditions. It exhibits a dominant peak at quasi-momentum k = (π/a, π/a), which is a characteristic signature of CB order. A second strongly suppressed quasi-peak lies at k = (0, 0) (due to finite size effects), corresponding to a homogenous liquid without any density order. b, S1(π/a, π/a) (black) and S1(0, 0) (blue) are plotted versus temperature T. Up to TTc = 420 mK, the structure factor signalling CB order remains at least twice as large as the structure factor for a homogeneous liquid. c, CB order parameter deduced from mean-field calculations as a function of the chemical potential μ and temperature (T = 4, 125, 247, 389, 450 mK in blue, violet, black, red and green respectively). The order parameter is given by the population difference nA − nB between two sub-lattices, A and B, of the square lattice. Below around 410 mK nA − nB is significant manifesting CB order.

Source data

Extended Data Fig. 2 Spatially resolved PL intensity and intensity fluctuations.

a, Spatial variations of the PL intensity \(\overline{{A}_{\max }}\) (black line) and \(\sigma ({A}_{\max })/\overline{{A}_{\max }}\) (violet bars) measured at T = 330 mK and P = 17 nW, that is for the MI phase. Both \(\overline{{A}_{\max }}\) and \(\sigma ({A}_{\max })/\overline{{A}_{\max }}\) vary weakly in the 3 μm central region of the laser excited region, evidencing that the MI phase is homogeneous across more than 100 lattice sites. Outside this region we note that \(\sigma ({A}_{\max })/\overline{{A}_{\max }}\) increases steeply while \(\overline{{A}_{\max }}\) drops, which signals that excitons realise a normal fluid. b, Same measurements obtained for P = 8.2 nW, that is for the CB phase. Results are extracted from the experiments reported in Fig. 2.

Source data

Extended Data Fig. 3 Exciton compressibility versus average lattice filling.

Fluctuations of the maximum of the PL intensity (\(\sigma ({A}_{\max })/\overline{{A}_{\max }}\)) as a function of the power P of the loading laser, in a different region of our two-dimensional square lattice. As for Fig. 2, experimental results are obtained by statistically analysing a series of 10 measurements for every value of P. The laser excitation profile was set close to the one for the experiments shown in Fig. 2. Remarkably we recover that two insulating phases emerge for P = 7 and 14.4 nW, in good agreement with the findings discussed in the main text. Experiments were realised at T = 330 mK; error bars display statistical confidence while the level of Poissonian fluctuations is given by the grey shaded region.

Source data

Extended Data Fig. 4 Residuals at \(\bar{n}=\) 1/2 and 1.

a, PL spectrum measured at \(\bar{n}\)=1/2 (top) together with the modelled profile (black line). The bottom panel displays the residuals between modelled and measured profiles (black line), compared to the amplitude of poissonian fluctuations (grey area). b, Same measurements for \(\bar{n}\)= 1. Experimental results are taken from the data reported in Fig. 2b–d.

Source data

Source data

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lagoin, C., Bhattacharya, U., Grass, T. et al. Extended Bose–Hubbard model with dipolar excitons. Nature 609, 485–489 (2022). https://doi.org/10.1038/s41586-022-05123-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05123-z

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing