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            Abstract
The divergence of the common dendritic cell progenitor1,2,3 (CDP) into the conventional type 1 and type 2 dendritic cell (cDC1 and cDC2, respectively) lineages4,5 is poorly understood. Some transcription factors act in the commitment of already specified progenitorsâ€”such as BATF3, which stabilizes Irf8 autoactivation at the +32â€‰kb Irf8 enhancer4,6â€”but the mechanisms controlling the initial divergence of CDPs remain unknown. Here we report the transcriptional basis of CDP divergence and describe the first requirements for pre-cDC2 specification. Genetic epistasis analysis7 suggested that Nfil3 acts upstream of Id2, Batf3 and Zeb2 in cDC1 development but did not reveal its mechanism or targets. Analysis of newly generated NFIL3 reporter mice showed extremely transient NFIL3 expression during cDC1 specification. CUT&RUN and chromatin immunoprecipitation followed by sequencing identified endogenous NFIL3 binding in the â€“165â€‰kb Zeb2 enhancer8 at three sites that also bind the CCAAT-enhancer-binding proteins C/EBPÎ± and C/EBPÎ². In vivo mutational analysis using CRISPRâ€“Cas9 targeting showed that these NFIL3â€“C/EBP sites are functionally redundant, with C/EBPs supporting and NFIL3 repressing Zeb2 expression at these sites. A triple mutation of all three NFIL3â€“C/EBP sites ablated Zeb2 expression in myeloid, but not lymphoid progenitors, causing the complete loss of pre-cDC2 specification and mature cDC2 development in vivo. These miceÂ did not generate T helper 2 (TH2) cell responses against Heligmosomoides polygyrus infection, consistent with cDC2 supporting TH2 responses to helminths9,10,11. Thus, CDP divergence into cDC1 or cDC2 is controlled by competition between NFIL3 and C/EBPs at the â€“165â€‰kb Zeb2 enhancer.
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                    Fig. 1: Transient NFIL3 expression drives cDC1 specification.[image: ]


Fig. 2: Mutation of three NFIL3 binding sites in the â€“165â€‰kb Zeb2 enhancer abrogates cDC2 and monocyte development.[image: ]


Fig. 3: C/EBPs bind to the â€“165â€‰kb Zeb2 enhancer to support cDC2 and monocyte development.[image: ]


Fig. 4: Zeb2 is only required for the specification of cDC2, which support TH2 responses to H. polygyrus infection.[image: ]
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                Data availability

              
              The CUT&RUN, ChIPâ€“seq and RNA-seq data generated in the current study are available in the Gene Expression Omnibus database with the accession number GSE188579. ChIPâ€“seq datasets for NFIL3 in T cells were provided by V. K. Kuchroo28. ChIPâ€“seq datasets for C/EBPÎ² in Ly-6Clow monocytes34 (GSE80031) and gene expression microarray datasets for Cebpa KO hematopoietic stem and progenitor cells22 (GSE146288) were downloaded and reanalyzed.Â Source data are provided with this paper.
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Extended data figures and tables

Extended Data Fig. 1 Generation of Nfil3GFP reporter mice.
a, Schematic diagrams of mouse Nfil3 WT allele, targeting vector and targeted allele. Filled and open boxes denote coding and noncoding exons of Nfil3, respectively. N indicate NdeI site; Triangles indicate loxP sequences; TK, thymidine kinase promoter; DTA, diphtheria toxin A; pGK-Neo, neomycin selection cassette. b, Southern blot analysis of Nfil3+/+ and Nfil3GFP/+ mice. Genomic DNA was isolated from mouse liver, digested with NdeI, electrophoresed, and hybridized with Digoxigenin-labeled probes indicated in a. Southern blot with 5â€™ probe gave a 10.0 and a 5.0â€‰kb band for WT and targeted allele. Southern blot with 3â€™ probe gave a 10.0 and a 7.7â€‰kb band for WT and targeted allele, respectively. Progeny from ES cell clone 22 were bred to CMV-Cre mice to remove the neomycin selection cassette, and used in the following study. Data shown are one of two similar experiments. For gel source data, see Supplementary Figure 1. c, d, Frequency of cDC1 and representative flow plots showing pDCs and cDCs differentiated from WT CD117hi BM progenitors retrovirally expressing NFIL3 and GFP-NFIL3. Data are pooled from three independent experiments. e, f, Frequency of cDC1 and representative flow plots showing splenic pDCs and cDCs in WT and Nfil3GFP/GFP mice. Data are pooled from two independent experiments (nâ€‰=â€‰5 for each genotype). WT versus Nfil3GFP/GFP cDC1 Pâ€‰=â€‰0.0952. g, PCA of the cDC1s and IL-4 + LPS stimulated B cells from WT, Nfil3GFP/GFP and Nfil3â€“/â€“ mice by all expressed mRNAs. Mean Â± s.d.; NS, not significant; f: unpaired, two-tailed Mannâˆ’Whitney test.
Source Data


Extended Data Fig. 2 Nfil3GFP reporter mice analysis.
a, Representative FACS histograms of GFP-NFIL3 expression of indicated splenic cell types from WT and Nfil3GFP/GFP mice. TCRÎ²+ T cells were directly analyzed or stimulated with plate-bound Î±-CD3 + Î±-CD28 (2â€‰Î¼g/mL) antibodies for 72â€‰h. CD19+ B cells were directly analyzed or stimulated with IL-4 (20â€‰ng/mL) + LPS (5â€‰Î¼g/mL) for 24â€‰h. Data shown are one of three similar experiments. b, Nfil3 transcripts, measured by RT-qPCR, in cells sorted from a. Data shown are one of two similar experiments. c, d, Representative flow plots showing GFP-NFIL3 expression in indicated BM cell types from WT and Nfil3GFP/GFP mice. Data shown are one of three similar experiments. For sequential gating strategies, see Supplementary Figure 1.
Source Data


Extended Data Fig. 3 Nfil3 acts as a repressor to drive cDC1 specification.
a, Flow cytometric analysis of GFP-NFIL3+ BM cells from Nfil3GFP/GFP mice. Data shown are one of three similar experiments. b, c, Representative flow plots and frequencies of pDCs and cDCs differentiated from GFP-NFIL3â€“ CDPs and GFP-NFIL3+ CDPs sorted from Nfil3GFP/GFP mice. Data are pooled from five independent experiments. d, Representative flow plots showing splenic cDC1s, cDC2s and pDCs from chimeras generated with equal mix of CD45.1+ WT BM and CD45.2+ Nfil3+/+ or Nfil3â€“/â€“ BM. e, Chimerism ratio of indicated lineages in chimeras generated as in d, presented as the ratio of CD45.2+ to CD45.1+ cells normalized to the ratio of CD45.2+ to CD45.1+ LSK cells within the same mouse. Data are pooled from two independent experiments (nâ€‰=â€‰5 for Nfil3+/+ and nâ€‰=â€‰4 for Nfil3â€“/â€“ mixed BM chimeras). f, g, Frequency of cDC1 and representative flow plots showing pDCs and cDCs differentiated from WT CD117hi BM progenitors retrovirally expressing NFIL3, NFIL3-KRAB or NFIL3-VP16. Data are pooled from three independent experiments. Schematic diagrams of NFIL3, NFIL3-KRAB and NFIL3-VP16 are depicted next to the plots. DBD denotes DNA-binding domain. Mean Â± s.d.; e: unpaired, multiple t tests with Welch correction.
Source Data


Extended Data Fig. 4 NFIL3 binds to the â€“165â€‰kb Zeb2 enhancer.
a, Representative flow plots showing DC potential of Hoxb8 cell line. The Hoxb8 cells were washed twice with cold PBS to remove residual Î²-estradiol and cytokines before standard Flt3L culture for 7 days. b, c, Frequency of cDC1 and representative flow plots showing cDCs differentiated from Hoxb8 cells retrovirally expressing NFIL3. Data are pooled from two independent experiments (nâ€‰=â€‰6 for each cell line). d, Nfil3 transcripts, measured by RT-qPCR, in GFP-NFIL3â€“ CDP, GFP-NFIL3+ CDP, and Hoxb8 cell lines retrovirally expressing NFIL3 used for CUT&RUN and ChIP-seq experiments. Data are pooled from three independent experiments for GFP-NFIL3â€“ CDP, GFP-NFIL3+ CDP, and two independent experiments for Hoxb8 cell lines. e, Rank of the NFIL3 CUT&RUN and ChIP-seq peaks at the â€“165â€‰kb Zeb2 enhancer. f, Alignment of human, genome draft hg19, and mouse, genome draft mm10, for the â€“165â€‰kb Zeb2 enhancer regions. Red boxes indicate NFIL3 binding sites. g, EMSA showing NFIL3 binding at â€“165â€‰kb Zeb2 enhancer. A 37 bp 32P-labelled DNA probe encompassing the NFIL3 binding site 1 from the â€“165â€‰kb Zeb2 enhancer was synthesized as site 1 probe. A 40 bp 32P-labelled DNA probe containing an optimized NFIL3 motif and flanking sequence of the NFIL3 binding site 3 from the â€“165â€‰kb Zeb2 enhancer was synthesized as Nâ€‰>â€‰C probe. NFIL3 binding specificity was demonstrated by competition with non-radioactively labeled probes and supershift with anti-NFIL3 antibody. The competitor 1 indicates site 1, and the competitor 1mut has the same sequence as site 1 except that the NFIL3 binding site 1 was mutated. Data shown are one of two similar experiments. For gel source data, see Supplementary Figure 1. Mean Â± s.d.
Source Data


Extended Data Fig. 5 Mutation of three NFIL3 binding sites in the â€“165â€‰kb Zeb2 enhancer abrogates cDC2 development (Part I).
a, Targeting strategy of NFIL3 binding site mutant mice. gRNA-1 and donor-1 were introduced into WT zygotes to mutate NFIL3 binding site 1. Î”1 mice were generated from the first round of targeting. gRNA-2, gRNA-3 and donor-2 were introduced into Î”1 homozygous zygotes to mutant NFIL3 binding site 2 and 3. Î”1+2 and Î”1+3 mice were generated from the second round of targeting. gRNA-4 and donor-3 were introduced into Î”1+2 heterozygous zygotes to mutate NFIL3 binding site 3. Î”1+2+3 mice were generated from the third round of targeting. b, Representative flow plots showing splenic cDCs and pDCs in WT, Î”1, Î”1+2, Î”1+3 and Î”1+2+3 mice. c, Number of splenic cDC1 and cDC2 in WT, Î”1, Î”1+2, Î”1+3 and Î”1+2+3 mice. Data are pooled from five independent experiments (nâ€‰=â€‰12 for WT, nâ€‰=â€‰11 for Î”1, Î”1+2, Î”1+3, and nâ€‰=â€‰8 for Î”1+2+3 mice). WT versus Î”1+2 cDC1 Pâ€‰=â€‰0.2447, WT versus Î”1 cDC2 Pâ€‰=â€‰0.9885, WT versus Î”1+2 cDC2 P > 0.9999. NS, not significant; c: Brownâˆ’Forsythe and Welch ANOVA with Dunnettâ€™s T3 multiple comparisons test.
Source Data


Extended Data Fig. 6 Mutation of three NFIL3 binding sites in the â€“165â€‰kb Zeb2 enhancer abrogates cDC2 development (Part II).
a, Representative flow plots showing migratory and resident cDCs in mesenteric lymph nodes (MLNs) from WT and Î”1+2+3 naÃ¯ve mice or mice infected with H. polygyrus (H.p.) for 14 days. b, Frequency of migratory CD24â€“ CD172a+ cDC2 and resident CD172a+ cDC2 in MLNs from WT and Î”1+2+3 naÃ¯ve mice or mice infected with H.p. for 14 days. Data are pooled from seven independent experiments (nâ€‰=â€‰9 for naÃ¯ve mice and nâ€‰=â€‰5 for H.p. infected mice). c, Frequency of migratory CD103â€“ CD11b+ cDC2 and resident CD172a+ cDC2 in SLNs from WT and Î”1+2+3 mice. Data are pooled from three independent experiments (nâ€‰=â€‰3 for each genotype). d, Frequency of CD103â€“ CD11b+ cDC2 in small intestine lamina propria from WT and Î”1+2+3 mice. Data are pooled from four independent experiments (nâ€‰=â€‰4 for each genotype). e, Representative flow plots showing small intestine lamina propria cDCs in WT and Î”1+2+3 mice. f, Frequency and number of splenic pDC in WT, Î”1, Î”1+2, Î”1+3 and Î”1+2+3 mice. Data are pooled from five independent experiments (nâ€‰=â€‰12 for WT, nâ€‰=â€‰11 for Î”1, Î”1+2, Î”1+3, and nâ€‰=â€‰8 for Î”1+2+3 mice). g, Frequency of BM pDC in WT and Î”1+2+3 mice. Data are pooled from three independent experiments (nâ€‰=â€‰7 for each genotype). h, IFN-Î±, measured from splenic pDCs stimulated for 16 h with CpG-A 2216, or left unstimulated. Data are pooled from two independent experiments (nâ€‰=â€‰4 for each genotype). Mean Â± s.d.; b, c, h: unpaired, multiple t tests with Welch correction; d, g: unpaired, two-tailed Mannâˆ’Whitney test; f: Brownâˆ’Forsythe and Welch ANOVA with Dunnettâ€™s T3 multiple comparisons test.
Source Data


Extended Data Fig. 7 Mutation of three NFIL3 binding sites in the â€“165â€‰kb Zeb2 enhancer abrogates monocyte development.
a, Representative flow plots showing monocytes among CD45+ peripheral blood cells from WT, Î”1, Î”1+2, Î”1+3 and Î”1+2+3 mice. b, Representative flow plots showing cMoPs and monocytes (Mo) in BM of WT and Î”1+2+3 mice. Data shown are one of five similar experiments. c, Frequency of peripheral blood monocytes, splenic monocytes, and number of splenic monocytes in WT, Î”1, Î”1+2, Î”1+3 and Î”1+2+3 mice. Data are pooled from two independent experiments for peripheral blood monocytes and five independent experiments for splenic monocytes (peripheral blood monocytes: nâ€‰=â€‰13 for WT, nâ€‰=â€‰10 for Î”1, nâ€‰=â€‰8 for Î”1+2, nâ€‰=â€‰9 for Î”1+3 and nâ€‰=â€‰7 for Î”1+2+3 mice; splenic monocytes: nâ€‰=â€‰11 for WT, nâ€‰=â€‰7 for Î”1, nâ€‰=â€‰4 for Î”1+2, nâ€‰=â€‰7 for Î”1+3 and nâ€‰=â€‰8 for Î”1+2+3 mice). d, Representative flow plots showing splenic B cells and T cells in WT and Î”1+2+3 mice. e, Frequency of splenic B cells and T cells in WT, Î”1, Î”1+2, Î”1+3 and Î”1+2+3 mice. Data are pooled from three independent experiments (nâ€‰=â€‰9 for WT, nâ€‰=â€‰7 for Î”1, Î”1+2, Î”1+3, and nâ€‰=â€‰5 for Î”1+2+3 mice). WT versus Î”1+2+3 B cell Pâ€‰=â€‰0.9238, WT versus Î”1+2+3 T cell Pâ€‰=â€‰0.6980. f, Representative flow plots showing monocytes and macrophages in small intestine lamina propria from WT and Î”1+2+3 mice. g, Frequency of small intestine lamina propria monocytes and macrophages in WT and Î”1+2+3 mice. Data are pooled from four independent experiments (nâ€‰=â€‰4 for each genotype). Mean Â± s.d.; NS, not significant; c, e: Brownâˆ’Forsythe and Welch ANOVA with Dunnettâ€™s T3 multiple comparisons test; g: unpaired, two-tailed Mannâˆ’Whitney test.
Source Data


Extended Data Fig. 8 C/EBP factors bind to the â€“165â€‰kb Zeb2 enhancer to support cDC2 and monocyte development.
a, Rank of the C/EBPÎ± and C/EBPÎ² CUT&RUN peaks at the â€“165â€‰kb Zeb2 enhancer. b, Representative flow plots showing GFP-reporter activity in monocytes transduced with empty retrovirus (minimal CMV promoter only) or retroviruses expressing the â€“165â€‰kb Zeb2 enhancer or mutants of the indicated NFIL3/C/EBP binding sites. Data shown are one of three similar experiments. A bar graph on the right shows mean values of MFI Â± s.d. c, Representative flow plots showing cDCs differentiated from WT CDPs retrovirally expressing C/EBPÎ³ or C/EBPÎ´. Data shown are one of two similar experiments. d, Representative flow plots showing monocytes differentiated from WT CDPs retrovirally expressing C/EBPÎ± or C/EBPÎ² (LAP isoform) (pre-gate: CD317â€“ B220â€“ cells). cDCs expressing empty-retroviral vectors are shown as controls (dashed black lines) for Ly-6C and CD115 expression in MHCIIâ€“ CD11câ€“ cells. Data shown are one of two similar experiments. e, Frequency of cDC1s, cDC2s and monocytes in all infected cells (left panel) or infected cDCs (right panel) differentiated from WT or Î”1+2+3 CDPs retrovirally expressing C/EBPÎ± or C/EBPÎ² (LAP isoform). Data are pooled from four independent experiments. f, Single-cell RNA transcriptome analysis of CDPs showing Cebpa, Cebpb and Cebpe expression visualized with Loupe Browser. g, h, Frequency of cDC2 and representative flow plots showing in vivo developmental potential of Cebpbfl/fl CD117hi BM progenitors transduced with empty retrovirus or retrovirus expressing Cre recombinase. Recipient spleens were analyzed for the presence of retroviral transduced and donor-derived cDCs. Data are pooled from two independent experiments (nâ€‰=â€‰4 for each retrovirus). i, Gene expression microarray analysis of hematopoietic stem and progenitor cells from WT or Cebpa knockout mice. The cells were left un-treated or treated with Flt3L for 4 h. Shown are averages of quadruplicate gene expression values of the indicated genes. Mean Â± s.d.; h: unpaired, two-tailed Mannâˆ’Whitney test.
Source Data


Extended Data Fig. 9 Myeloid and lymphoid pathways of pDC development are distinguished by different requirements in the â€“165â€‰kb Zeb2 enhancer.
a, Representative flow plots showing pDCs and cDCs differentiated from sort purified CDPs and MDPs of WT and Î”1+2+3 mice, assessed after 5 days of culture with Flt3L. Data shown are one of three similar experiments. b, Representative flow plots showing in vivo developmental potential of CDPs and MDPs from WT and Î”1+2+3 mice. Recipient spleens were analyzed for the presence of CD45.2+ donor-derived pDCs and cDCs. Data shown are one of two (CDP) or three (MDP) similar experiments. c, Representative flow plots showing pDCs differentiated from sort purified CMPs and CLPs of WT and Î”1+2+3 mice, assessed after 7 (CMPs) or 5 (CLPs) days of culture with Flt3L. Data shown are one of two (CMP) or three (CLP) similar experiments. d, Representative flow plots showing CDPs (CD115+ CD127â€“), IL-7R+ LPs (CD115â€“ CD127+) and IL-7Râ€“ CSF1Râ€“ NPs (CD115â€“ CD127â€“) in the BM of WT and Î”1+2+3 mice (pre-gate: lineageâ€“ CD16/CD32â€“ CD135+ CD117int-neg cells). Data shown are one of three similar experiments. e, Representative flow plots showing pDCs differentiated from sort purified CDPs, IL-7R+ LPs and IL-7Râ€“CSF1Râ€“ NPs (as in d) of WT and Î”1+2+3 mice, assessed after 4 days of culture with Flt3L. Data shown are one of three similar experiments.


Extended Data Fig. 10 Zeb2 is not required for the maintenance of cDC2, which support TH2 responses to H. polygyrus infection.
a, Diagrams showing DC development in WT, Î”1+2+3, Irf8 +32â€“/â€“ and Î”1+2+3â€‰Ã—â€‰Irf8 +32â€“/â€“ mice. b, Representative flow plots showing monocytes among CD45+ peripheral blood cells from WT, Î”1+2+3, Irf8 +32â€“/â€“ and Î”1+2+3 Ã— Irf8 +32â€“/â€“ mice. c, Frequency of peripheral blood monocytes in WT, Î”1+2+3, Irf8 +32â€“/â€“ and Î”1+2+3 Ã— Irf8 +32â€“/â€“ mice. Data are pooled from two independent experiments (nâ€‰=â€‰6 for WT, Î”1+2+3, nâ€‰=â€‰7 for Irf8 +32â€“/â€“ and nâ€‰=â€‰6 for Î”1+2+3â€‰Ã—â€‰Irf8 +32â€“/â€“ mice). d, Frequency of IL-4, IL-5, IL-13 or IFN-Î³ expressing CD4+ T cells in MLNs from WT, Î”1+2+3, Irf8 +32â€“/â€“ and Î”1+2+3â€‰Ã—â€‰Irf8 +32â€“/â€“ naÃ¯ve mice or mice infected with H.p. for 14 days (pre-gate: TCRÎ²+ CD4+ cells). Data are pooled from two independent experiments (nâ€‰=â€‰3 for naÃ¯ve mice, nâ€‰=â€‰6 for H.p. infected WT, Î”1+2+3, Irf8 +32â€“/â€“ mice and nâ€‰=â€‰5 for H.p. infected Î”1+2+3â€‰Ã—â€‰Irf8 +32â€“/â€“ mice). WT versus Î”1+2+3â€‰Ã—â€‰Irf8 +32â€“/â€“ IL-4 expressing CD4+ T cells in H.p. infected mice Pâ€‰=â€‰0.1044, WT versus Î”1+2+3 Ã— Irf8 +32â€“/â€“ IL-13 expressing CD4+ T cells in H.p. infected mice Pâ€‰=â€‰0.8243. e, f, Frequency of IgG1+ class-switched B cells (e) or FAS+ GL7+ germinal center B cells (f) of total CD19+ B cells in MLNs from WT or Î”1+2+3 naÃ¯ve mice or mice infected with H.p. for 14 days (nâ€‰=â€‰3 for WT or Î”1+2+3 naÃ¯ve mice, nâ€‰=â€‰5 for H.p. infected WT mice and nâ€‰=â€‰4 for H.p. infected Î”1+2+3 mice). WT versus Î”1+2+3 IgG1+ class-switched B cells in H.p. infected mice Pâ€‰=â€‰0.2145. g, Total serum IgE and IgG1 in naÃ¯ve WT, Î”1+2+3 mice or mice infected with H.p. for 14 days. Data are pooled from two independent experiments (nâ€‰=â€‰4 for naÃ¯ve mice and nâ€‰=â€‰9 for H.p. infected mice). h, Frequency of peripheral blood eosinophils and neutrophils in WT and Î”1+2+3 mice (nâ€‰=â€‰8 for each genotype). i, Number of ILC2s per cm small intestine and frequency of ILC2s in small intestine lamina propria CD45+ cells of WT and Î”1+2+3 mice (nâ€‰=â€‰3 for each genotype). WT versus Î”1+2+3 ILC2 number Pâ€‰>â€‰0.9999, frequency Pâ€‰=â€‰0.4000. j, Number of tuft cells per cm small intestine and frequency of tuft cells in small intestine epithelium CD45âˆ’ cells of WT and Î”1+2+3 mice (nâ€‰=â€‰3 for each genotype). WT versus Î”1+2+3 tuft cell number Pâ€‰=â€‰0.7000, frequency Pâ€‰=â€‰0.7000. Mean Â± s.d.; NS, not significant; c: Brownâˆ’Forsythe and Welch ANOVA with Dunnettâ€™s T3 multiple comparisons test; d: ordinary two-way ANOVA with Dunnettâ€™s multiple comparisons test; eâ€“g: unpaired, multiple t tests with Welch correction; hâ€“j: unpaired, two-tailed Mannâˆ’Whitney test.
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