Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Giant pyroelectricity in nanomembranes

Abstract

Pyroelectricity describes the generation of electricity by temporal temperature change in polar materials1,2,3. When free-standing pyroelectric materials approach the 2D crystalline limit, how pyroelectricity behaves remained largely unknown. Here, using three model pyroelectric materials whose bonding characters along the out-of-plane direction vary from van der Waals (In2Se3), quasi-van der Waals (CsBiNb2O7) to ionic/covalent (ZnO), we experimentally show the dimensionality effect on pyroelectricity and the relation between lattice dynamics and pyroelectricity. We find that, for all three materials, when the thickness of free-standing sheets becomes small, their pyroelectric coefficients increase rapidly. We show that the material with chemical bonds along the out-of-plane direction exhibits the greatest dimensionality effect. Experimental observations evidence the possible influence of changed phonon dynamics in crystals with reduced thickness on their pyroelectricity. Our findings should stimulate fundamental study on pyroelectricity in ultra-thin materials and inspire technological development for potential pyroelectric applications in thermal imaging and energy harvesting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematics of the microscopic mechanism of the primary pyroelectricity and dimensionality effect.
Fig. 2: Fabrications and characterizations of sheets/nanomembranes.
Fig. 3: Pyroelectricity in In2Se3, CBNO and ZnO and the dimensionality effect.
Fig. 4: DW factor in CBNO.

Similar content being viewed by others

Data availability

Source data for the main figures are provided with this paper. All data related to this study are available from the corresponding authors on request. Source data are provided with this paper.

References

  1. Born, M. On the quantum theory of pyroelectricity. Rev. Mod. Phys. 17, 245–251 (1945).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Szigeti, B. Temperature dependence of pyroelectricity. Phys. Rev. Lett. 35, 1532–1534 (1975).

    Article  ADS  CAS  Google Scholar 

  3. Lang, S. B. Pyroelectricity: from ancient curiosity to modern imaging tool. Phys. Today 58, 31 (2005).

    Article  CAS  Google Scholar 

  4. Wang, Z. et al. Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing. Nat. Commun. 6, 8401 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Yang, Y. et al. Pyroelectric nanogenerators for harvesting thermoelectric energy. Nano Lett. 12, 2833–2838 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Pandya, S. et al. Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films. Nat. Mater. 17, 432–438 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. You, H. et al. Room-temperature pyro-catalytic hydrogen generation of 2D few-layer black phosphorene under cold-hot alternation. Nat. Commun. 9, 2889 (2018).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  8. Naranjo, B., Gimzewski, J. K. & Putterman, S. Observation of nuclear fusion driven by a pyroelectric crystal. Nature 434, 1115–1117 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Stewart, J. W., Vella, J. H., Li, W., Fan, S. & Mikkelsen, M. H. Ultrafast pyroelectric photodetection with on-chip spectral filters. Nat. Mater. 19, 158–162 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Resta, R. & Vanderbilt, D. in Physics of Ferroelectrics: A Modern Perspective 31–68 (Springer, 2007).

  11. Allen, P. B. & Heine, V. Theory of the temperature dependence of electronic band structures. J. Phys. C Solid State Phys. 9, 2305–2312 (1976).

    Article  ADS  CAS  Google Scholar 

  12. Giustino, F., Louie, S. G. & Cohen, M. L. Electron-phonon renormalization of the direct band gap of diamond. Phys. Rev. Lett. 105, 265501 (2010).

    Article  ADS  PubMed  CAS  Google Scholar 

  13. Liu, J. & Pantelides, S. T. Mechanisms of pyroelectricity in three- and two-dimensional materials. Phys. Rev. Lett. 120, 207602 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Peierls, R. E. Quantum Theory of Solids 108 (Oxford Univ. Press, 1955).

  15. Landau, L. The theory of phase transitions. Nature 138, 840–841 (1936).

    Article  ADS  CAS  Google Scholar 

  16. Halperin, B. I. On the Hohenberg–Mermin–Wagner theorem and its limitations. J. Stat. Phys. 175, 521–529 (2019).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C Solid State Phys. 6, 1181–1203 (1973).

    Article  ADS  CAS  Google Scholar 

  18. Hong, S. S. et al. Two-dimensional limit of crystalline order in perovskite membrane films. Sci. Adv. 3, eaao5173 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Ji, D. et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 570, 87–90 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Xi, X. et al. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotechnol. 10, 765–769 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Tusche, C., Meyerheim, H. L. & Kirschner, J. Observation of depolarized ZnO(0001) monolayers: formation of unreconstructed planar sheets. Phys. Rev. Lett. 99, 026102 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Xue, F. et al. Room-temperature ferroelectricity in hexagonally layered α-In2Se3 nanoflakes down to the monolayer limit. Adv. Funct. Mater. 28, 1803738 (2018).

    Article  CAS  Google Scholar 

  23. Meirzadeh, E. et al. Surface pyroelectricity in cubic SrTiO3. Adv. Mater. 31, 1904733 (2019).

    Article  CAS  Google Scholar 

  24. Yang, M.-M. et al. Piezoelectric and pyroelectric effects induced by interface polar symmetry. Nature 584, 377–381 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Xu, C. et al. Two-dimensional antiferroelectricity in nanostripe-ordered In2Se3. Phys. Rev. Lett. 125, 047601 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Zheng, C. et al. Room temperature in-plane ferroelectricity in van der Waals In2Se3. Sci. Adv. 4, eaar7720 (2018).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  27. Chen, C. et al. Ferroelectricity in Dion–Jacobson ABiNb2O7 (A = Rb, Cs) compounds. J. Mater. Chem. C 3, 19–22 (2015).

    Article  CAS  Google Scholar 

  28. Fennie, C. J. & Rabe, K. M. Ferroelectricity in the Dion-Jacobson CsBiNb2O7 from first principles. Appl. Phys. Lett. 88, 262902 (2006).

    Article  ADS  CAS  Google Scholar 

  29. Heiland, G. & Ibach, H. Pyroelectricity of zinc oxide. Solid State Commun. 4, 353–356 (1966).

    Article  ADS  CAS  Google Scholar 

  30. Junquera, J. & Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506–509 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Chynoweth, A. G. Dynamic method for measuring the pyroelectric effect with special reference to barium titanate. J. Appl. Phys. 27, 78–84 (1956).

    Article  ADS  CAS  Google Scholar 

  32. Lubomirsky, I. & Stafsudd, O. Invited review article: practical guide for pyroelectric measurements. Rev. Sci. Instrum. 83, 051101 (2012).

    Article  ADS  PubMed  CAS  Google Scholar 

  33. Whatmore, R. W. Pyroelectric devices and materials. Rep. Prog. Phys. 49, 1335–1386 (1986).

    Article  ADS  CAS  Google Scholar 

  34. Boehnke, U. C., Kühn, G., Berezovskii, G. A. & Spassov, T. Some aspects of the thermal behaviour of In2Se3. J. Therm. Anal. 32, 115–120 (1987).

    Article  CAS  Google Scholar 

  35. Wu, D. et al. Thickness-dependent dielectric constant of few-layer In2Se3 nanoflakes. Nano Lett. 15, 8136–8140 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Newnham, R. E. Properties of Materials: Anisotropy, Symmetry, Structure (Oxford Univ. Press, 2005).

  37. Langton, N. H. & Matthews, D. The dielectric constant of zinc oxide over a range of frequencies. Br. J. Appl. Phys. 9, 453–456 (1958).

    Article  ADS  CAS  Google Scholar 

  38. Zhao, Z. et al. Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics. Phys. Rev. B 70, 024107 (2004).

    Article  ADS  CAS  Google Scholar 

  39. Warren, B. E. X-ray Diffraction (Courier Corporation, 1990).

  40. Liu, J., Fernández-Serra, M. V. & Allen, P. B. First-principles study of pyroelectricity in GaN and ZnO. Phys. Rev. B 93, 081205 (2016).

    Article  ADS  CAS  Google Scholar 

  41. Wang, B. & Gall, D. Fully strained epitaxial Ti1−xMgxN(001) layers. Thin Solid Films 688, 137165 (2019).

    Article  ADS  CAS  Google Scholar 

  42. Yuan, Y. et al. Three-dimensional atomic scale electron density reconstruction of octahedral tilt epitaxy in functional perovskites. Nat. Commun. 9, 5220 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vilaplana, R. et al. Experimental and theoretical studies on α-In2Se3 at high pressure. Inorg. Chem. 57, 8241–8252 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Liu, L. et al. Atomically resolving polymorphs and crystal structures of In2Se3. Chem. Mater. 31, 10143–10149 (2019).

    Article  CAS  Google Scholar 

  45. Xu, C. et al. Two-dimensional ferroelasticity in van der Waals β′-In2Se3. Nat. Commun. 12, 3665 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Klemenz Rivenbark, C. F. in Springer Handbook of Crystal Growth (eds Dhanaraj, G., Byrappa, K., Prasad, V. & Dudley, M.) 1041–1068 (Springer, 2010).

  47. Morin, S. A., Forticaux, A., Bierman, M. J. & Jin, S. Screw dislocation-driven growth of two-dimensional nanoplates. Nano Lett. 11, 4449–4455 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Lewis, B. The growth of crystals of low supersaturation: I. Theory. J. Cryst. Growth 21, 29–39 (1974).

    Article  ADS  CAS  Google Scholar 

  49. Guo, Y. et al. Unit-cell-thick domain in free-standing quasi-two-dimensional ferroelectric material. Phys. Rev. Mater. 5, 044403 (2021).

    Article  ADS  CAS  Google Scholar 

  50. Schilling, A. et al. Scaling of domain periodicity with thickness measured in BaTiO3 single crystal lamellae and comparison with other ferroics. Phys. Rev. B 74, 024115 (2006).

    Article  ADS  CAS  Google Scholar 

  51. Taylor, D. Thermal expansion data. I: binary oxides with the sodium chloride and wurtzite structures, MO. Trans. J. Br. Ceram. Soc. 83, 5–9 (1984).

    Google Scholar 

  52. Pathak, P. & Vasavada, N. Thermal expansion of NaCl, KCl and CsBr by X-ray diffraction and the law of corresponding states. Acta Crystallogr. A 26, 655–658 (1970).

    Article  ADS  CAS  Google Scholar 

  53. Jachalke, S. et al. The pyroelectric coefficient of free standing GaN grown by HVPE. Appl. Phys. Lett. 109, 142906 (2016).

    Article  ADS  CAS  Google Scholar 

  54. Lang, S. B. & Das-Gupta, D. K. in Handbook of Advanced Electronic and Photonic Materials and Devices (ed. Nalwa, H. S.) 1–55 (Academic Press, 2001).

  55. Felix, P., Gamot, P., Lacheau, P. & Raverdy, Y. Pyroelectric, dielectric and thermal properties of TGS, DTGS and TGFB. Ferroelectrics 17, 543–551 (1977).

    Article  Google Scholar 

  56. Gebre, T., Batra, A. K., Guggilla, P., Aggarwal, M. D. & Lal, R. B. Pyroelectric properties of pure and doped lithium niobate crystals for infrared sensors. Ferroelectr. Lett. Sect. 31, 131–139 (2004).

    Article  CAS  Google Scholar 

  57. Beerman, H. P. Investigation of pyroelectric material characteristics for improved infrared detector performance. Infrared Phys. 15, 225–231 (1975).

    Article  ADS  CAS  Google Scholar 

  58. Tang, Y. et al. Composition, dc bias and temperature dependence of pyroelectric properties of 111-oriented (1 − x)Pb(Mg1/3Nb2/3)O3xPbTiO3 crystals. Mater. Sci. Eng. B 119, 71–74 (2005).

    Article  CAS  Google Scholar 

  59. Sun, R. et al. Pyroelectric properties of Mn-doped 94.6Na0.5Bi0.5TiO3-5.4BaTiO3 lead-free single crystals. J. Appl. Phys. 115, 074101 (2014).

    Article  ADS  CAS  Google Scholar 

  60. Liu, S. & Maciolek, R. Rare-earth-modified Sr0.5Ba0.5Nb2O6, ferroelectric crystals and their applications as infrared detectors. J. Electron. Mater. 4, 91–100 (1975).

    Article  ADS  CAS  Google Scholar 

  61. Mermin, N. D. Crystalline order in two dimensions. Phys. Rev. 176, 250–254 (1968).

    Article  ADS  Google Scholar 

  62. Yuzyuk, Y. I. Raman scattering spectra of ceramics, films, and superlattices of ferroelectric perovskites: a review. Phys. Solid State 54, 1026–1059 (2012).

    Article  ADS  CAS  Google Scholar 

  63. Jehng, J. M. & Wachs, I. E. Structural chemistry and Raman spectra of niobium oxides. Chem. Mater. 3, 100–107 (1991).

    Article  CAS  Google Scholar 

  64. Link, A. et al. Temperature dependence of the E2 and A1(LO) phonons in GaN and AlN. J. Appl. Phys. 86, 6256–6260 (1999).

    Article  ADS  CAS  Google Scholar 

  65. Balkanski, M., Wallis, R. F. & Haro, E. Anharmonic effects in light scattering due to optical phonons in silicon. Phys. Rev. B 28, 1928–1934 (1983).

    Article  ADS  CAS  Google Scholar 

  66. Sun, X., Shi, J., Washington, M. A. & Lu, T.-M. Probing the interface strain in a 3D-2D van der Waals heterostructure. Appl. Phys. Lett. 111, 151603 (2017).

    Article  ADS  CAS  Google Scholar 

  67. Postmus, C., Ferraro, J. R. & Mitra, S. S. Pressure dependence of infrared eigenfrequencies of KCl and KBr. Phys. Rev. 174, 983–987 (1968).

    Article  ADS  CAS  Google Scholar 

  68. Ager, J. W., Veirs, D. K. & Rosenblatt, G. M. Spatially resolved Raman studies of diamond films grown by chemical vapor deposition. Phys. Rev. B 43, 6491–6499 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Air Force Office of Scientific Research under award number FA9550-18-1-0116, the US National Science Foundation under award numbers 1916652, 2031692 and 2024972, and the NYSTAR Focus Center at Rensselaer Polytechnic Institute under award number C180117. This paper is also supported by the U.S. National Science Foundation (Platform for the Accelerated Realization, Analysis, and Discovery of Interface Materials (PARADIM)) under Cooperative Agreement No. DMR-1539918 and made use of the Cornell Center for Materials Research (CCMR) Shared Facilities, which are supported through the NSF MRSEC Program (no. DMR-1719875). We thank J. Liu for the discussion on the mechanism of pyroelectricity. This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science user facility operated for the DOE Office of Science by Argonne National Laboratory under contract DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Contributions

J.S., J.J. and L.Z. conceived and developed the idea and planned the experiments. J.J. and L.Z. prepared the samples and devices and performed optical, scanning electron microscopy and AFM measurements. L.Z., J.J. and Y.H. performed the pyroelectric measurements. H.Z. performed synchrotron XRD measurements. P.B. and Y.S. performed MD simulations. Y.H. performed SHG measurements. J.J. performed Raman measurements. Y.G. and J.J. performed TEM and STEM measurements. B.W. and R.J. performed XRD measurements. Z.C., S.P. and X.W. contributed to the experimental set-ups and crystal growth. Y.X. performed AFM and RHEED measurements. Z.L. performed EBSD measurements. J.J. and L.Z. processed the data and J.J., L.Z. and J.S. interpreted the results. J.J. and L.Z. wrote the initial draft. J.S. revised the manuscript. C.M., Y.C., C.S., G.-C.W., T.-M.L., D.G., Y.-Y.S., N.K., E.F. and all the other authors were involved in the discussion for data analysis. J.S. supervised the project.

Corresponding authors

Correspondence to Jie Jiang, Yunfeng Shi or Jian Shi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 MD simulations in model HCP sheets.

a, Mean square displacement \(\left\langle {{u}_{l}}^{2}\right\rangle \) along in-plane directions as a function of time step in model sheets with out-of-plane bonding strengths of εe and εe/2 and thicknesses of 32 layers (left), 16 layers (middle) and ten layers (right). Insets are the corresponding model sheets. εe, σ0 and t0 are the energy, length and time units, respectively (see Methods). b, Average \(\left\langle {{u}_{l}}^{2}\right\rangle \) as a function of out-of-plane bonding strength and thickness. c, Percentage change of average \(\left\langle {{u}_{l}}^{2}\right\rangle \) as a function of thickness. The sheet with stronger out-of-plane bonding strength has more pronounced dimensionality effect on \(\left\langle {{u}_{l}}^{2}\right\rangle \). Grey arrows are guides for the eyes.

Extended Data Fig. 2 Crystal lattice dynamics in In2Se3 and CBNO.

a, Temperature-dependent (from 293 to 423 K) Raman spectra at around 109 cm−1 (\({{\rm{A}}}_{{\rm{g}}}^{2}\) mode) in a thick In2Se3 sheet (280 nm, left panel) and a thin In2Se3 sheet (29 nm, right panel). b, Temperature-dependent (from 293 to 673 K) Raman spectra at around 587 cm−1 (in-plane mode) in a thick CBNO sheet (730 nm, left panel) and a thin CBNO sheet (35 nm, right panel). Dashed lines are guides for the eyes. ce, Peak position (c), FWHM (d) and mean square amplitude \(\left\langle {Q}_{j}^{2}\right\rangle \) (e) of the \({{\rm{A}}}_{{\rm{g}}}^{2}\) phonon of In2Se3 as a function of temperature in the thick sheet (half-filled squares in cyan) and thin sheet (half-filled circles in orange). fh, Peak position (f), FWHM (g) and mean square amplitude \(\left\langle {Q}_{j}^{2}\right\rangle \) (h) of the in-plane phonon of CBNO as a function of temperature in the thick sheet (half-filled squares in cyan) and thin sheet (half-filled circles in orange). The inset of f is a schematic of the in-plane mode of CBNO. Cyan and orange lines are linear fittings.

Supplementary information

Supplementary Information

This file contains Supplementary Discussions 1–7, Supplementary Figs 1–48 and Supplementary Tables 1 and 2.

Video 1

Molecular dynamics simulation of ten layers with strong interlayer bond strength.

Video 2

Molecular dynamics simulation of ten layers with weak interlayer bond strength.

Video 3

Molecular dynamics simulation of 16 layers with strong interlayer bond strength.

Video 4

Molecular dynamics simulation of 16 layers with weak interlayer bond strength.

Video 5

Molecular dynamics simulation of 32 layers with strong interlayer bond strength.

Video 6

Molecular dynamics simulation of 32 layers with weak interlayer bond strength.

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Zhang, L., Ming, C. et al. Giant pyroelectricity in nanomembranes. Nature 607, 480–485 (2022). https://doi.org/10.1038/s41586-022-04850-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-04850-7

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing