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            Abstract
The voltage-dependent motor protein prestin (also known as SLC26A5) is responsible for the electromotive behaviour of outer-hair cells and underlies the cochlear amplifier1. Knockout or impairment of prestin causes severe hearing loss2,3,4,5. Despite the key role of prestin in hearing, the mechanism by which mammalian prestin senses voltage and transduces it into cellular-scale movements (electromotility) is poorly understood. Here we determined the structure of dolphin prestin in six distinct states using single-particle cryo-electron microscopy. Our structural and functional data suggest that prestin adopts a unique and complex set of states, tunable by the identity of bound anions (Clâˆ’ or SO42âˆ’). Salicylate, a drug that can cause reversible hearing loss, competes for the anion-binding site of prestin, and inhibits its function by immobilizing prestin in a new conformation. Our data suggest that the bound anion together with its coordinating charged residues and helical dipole act as a dynamic voltage sensor. An analysis of all of the anion-dependent conformations reveals how structural rearrangements in the voltage sensor are coupled to conformational transitions at the proteinâ€“membrane interface, suggesting a previously undescribed mechanism of area expansion. Visualization of the electromotility cycle of prestin distinguishes the protein from the closely related SLC26 anion transporters, highlighting the basis for evolutionary specialization of the mammalian cochlear amplifier at a high resolution.
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                    Fig. 1: The structure and function of dolphin prestin homodimer in Clâˆ’.[image: ]


Fig. 2: SO42âˆ’ drives prestin towards the down and intermediate states at zero membrane potential.[image: ]


Fig. 3: The structural basis of prestin inhibition by salicylate, and the evolutionary origins of electromotility.[image: ]


Fig. 4: The structural basis of prestinâ€™s voltage sensitivity and somatic electromotility.[image: ]
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                Data availability

              
              The atomic structure coordinates have been deposited at the RCSB PDB under accession numbers 7S8X, 7S9A, 7S9B, 7S9C, 7S9D and 7S9E; and the EM maps have been deposited in the Electron Microscopy Data Bank under accession numbers EMD-24928, EMD-24930, EMD-24931, EMD-24932, EMD-24933 and EMD-24934. All materials generated during the current study are available from the corresponding author under a materials transfer agreement with The University of Chicago.
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Extended data figures and tables

Extended Data Fig. 1 Function, biochemistry and structural features of electromotile prestin.
a, Electromotility analysis of HEK293 cells transfected with wild-type dolphin prestin compared to GFP-only transfected cell (Mock-GFP). The cellular displacement was normalized based on the cell largest diameter, d0 (Fig. 1b). The normalized electromotility was 0.05Â±02 (nâ€‰=â€‰6) versus 0.008Â±0.002 (nâ€‰=â€‰5) for wild-type prestin and Mock-GFP, respectively. These values were measured at the depolarizing voltage step changing from +120â€‰mV to âˆ’120â€‰mV (meanâ€‰Â±â€‰SD, is the number of independent cells. One-sided Student t-test, unpaired, P=0.005). b, Size-exclusion chromatography (SEC) curves of the full-length dolphin prestin purified in GDN, run on a Superose 6 column, in high Clâˆ’ (red) and SO42âˆ’ (blue) based solution. The fractions indicated by black dotted lines in both represent purified proteins that were used for cryo-EM imaging. c, Purified dolphin prestin cryo-EM samples, run on a Stain-free SDS-PAGE gel, indicating size of ~80â€‰kDa for the full-length prestin monomer (representation of nâ€‰=â€‰3).d, Topology of dolphin prestin. Different domains are indicated by color; the gate domain is colored in blue, the core domain in red and the C- and N-termini as well as the STAS domain in grey. The transmembrane helices are numbered from 1 to 14. The N- and C-termini as well as the STAS domain are oriented towards the cytoplasm.


Extended Data Fig. 2 Flow chart for the cryo-EM data processing and structure determination of the dolphin prestin in high Clâˆ’ condition.
a, The final reconstruction has a nominal resolution of 3.3â€‰Ã… (at FSC=0.143). The yellow scale bar on the micrograph represents 200â€‰Ã…. All the images in this figure were created in UCSF ChimeraX.


Extended Data Fig. 3 Structure of prestin in high Clâˆ’ and comparison with the Intermediate.
a, Comparison between prestin (high Clâˆ’) (blue and Red) and SLC26A9 Intermediate state (6RTF, grey). The structures are aligned based on residues 460 to 505 of one subunit (TM13-TM14, dotted box). ChimeraX was used for illustration. b, Electrostatic potential and surface charge distribution of SLC26A9 intermediate state19 compared with that of prestin in high Clâˆ’ panel c. The electrostatic charge distribution ranges from âˆ’5 to 5 kT from negative to positive charge. ChimeraX was used for illustration.


Extended Data Fig. 4 Flow chart for the cryo-EM data processing and structure determination of the dolphin prestin in SO42âˆ’.
a, b Cryo-EM data processing and structure determination of the dolphin prestin in Down I (SO42âˆ’) and Down II (SO42âˆ’) states. A was obtained from Dataset I, which was combined with Class B from Dataset II. The final reconstruction yielded two structures, Down I (SO42âˆ’) and Down II (SO42âˆ’), which have nominal resolutions of 4.2 and 6.7â€‰Ã…, respectively (at FSC=0.143). See Supplementary Figure 5 for the steps on how Class A and B were further processed. Evidence of both states was found in dataset II, however merging of datasets was required to improve resolution of states. c, Flow chart for the cryo-EM data processing and structure determination of the dolphin prestin in the Intermediate state (SO42âˆ’) (SeeÂ Methods for details). The final reconstruction has a nominal resolution of 4.6â€‰Ã… (at FSC=0.143). UCSF ChimeraX was for illustration of all the structures. The yellow scale bar on all the micrographs represents 200â€‰Ã….


Extended Data Fig. 5 Prestinâ€™s cross-sectional area changes upon transition from Down to Up states.
a, Upon the transition from Down to Up state and the movement of the anion-binding site, the most obvious changes are seen in the peripheral helices TM5b, TM6-TM7, and TM8. b, MD simulation of prestin in Up state is compared with the Inhibited II state (Clâˆ’ and Salicylate) equilibrated in POPC lipid bilayers. The cross-sectional area of outer and inner monolayers with mapped leaflet coordinate in the Z direction (across the membrane thickness) using all-atom molecular dynamics simulations (1Âµs). Î”z shows movement of the phosphate group of the lipids in the Z (thickness) direction. The comparison was made between Up (Clâˆ’) and Inhibited II (SO42âˆ’) states. The largest difference was observed at the location of the TM6 helix. c, Cross-sectional area calculations of the transmembrane domain of SLC26A9(12) along the hydrophobic thickness using CHARMM-membrane builder. Cross-sectional area change of SLC26A9 from Inward-facing to Intermediate states (6RTC and 6RTF) per monomer19. Note that prior to area calculation, the spatial arrangements of all the structures with respect to the hydrocarbon core of the lipid bilayer were first adjusted using the PPM server(30). The structures were aligned based on residues 460 to 505 (TM13-TM14). d, Comparison of the change in the micelle morphology between two salicylate-inhibited structures Inhibited I (Clâˆ’) and Inhibited II (SO42âˆ’ + Salicylate) states. The overlay of the two states shows drastic changes in the micelle thickness especially around TM6 region in addition to the overall changes in the micelle in-lane direction, both indicative of major structural rearrangements between the two states. ChimeraX was used for illustration.


Extended Data Fig. 6 Salicylate outcompetes SO42âˆ’ in binding to anion-binding pocket.
a, The NLC measurements of HEK293T cells transfected with dolphin prestin in SO42âˆ’ (0.15Â±0.06; nâ€‰=â€‰6). The NLC of these cells were completely abrogated (0.01Â±0.01) by 10â€‰mM Na-Salicylate (meanâ€‰Â±â€‰s.e.m.; n, is the number of independent cells. One-sided studentâ€™s t-test, unpaired, P=0.01) b, Density of Salicylate (orange) in the anion-binding site (blue) was resolved in the Inhibited II (SO42âˆ’) state of dolphin prestin. c, Sequence alignment of prestin and close SLC transporters across different species. Residues forming the anion-binding site are largely conserved (e.g. Q97, F101, F137). Putative voltage-sensing residue R399 in dolphin prestin is replaced by a valine in murine SLC26A9. Clustal Omega was used for the sequence alignments. ChimeraX was used for illustration.


Extended Data Fig. 7 Flow chart for the cryo-EM data processing and structure determination of the dolphin prestin in the Salicylate-Inhibited states.
Flow chart of the dolphin prestin in the a, Inhibited I state (Clâˆ’ + Salicylate) and b, (SO42âˆ’ + Salicylate) The final reconstructions have a nominal resolution of 3.8â€‰Ã… and 3.7â€‰Ã…, respectively (at FSC=0.143). All the images in this figure were created in UCSF ChimeraX. The yellow scale bar on all the micrographs represents 200â€‰Ã….


Extended Data Fig. 8 Electrostatic calculations and charge transfer of prestin across the membrane.
a, Mutation of the key residues in the anion binding pocket either completely abolishes the NLC (R399Q) or right shifts the V1/2 by more than 80â€‰mV (F101Y) to around +25â€‰Â±â€‰5â€‰mV (meanâ€‰Â±â€‰s.e.m.; n, is the number of independent cells. One-sided Student t-test, P=0.001); a similar effect has been observed in other prestin homologues using patch-clamp electrophysiology (51). b, Snapshots from the MD trajectories of the systems, and calculation of the electrostatic potential across the membrane at two states, the Down I state (with SO42âˆ’ in the left cavity, and without SO42âˆ’ in the right cavity) versus Up (with Clâˆ’ in the left cavity and without any Clâˆ’ in the right cavity). The x-z plane is crossing the two central anion-binding sites. In both models, the positive field is mainly focused around the transmembrane mid-plane and around the anion-binding site, creating an attractive (blue) field for the binding of the anion. However, in the Up state the field is more positive around the mid-plane compared to the corresponding region in the Intermediate state. In both cases, the presence of the anion only partially neutralizes (~35%) the positive field around the bilayer mid-plane. Note that the actual size of the simulation box is larger than what is illustrated here (seeÂ Methods). c, Averaged 1-D fraction of membrane potential in the z direction along the two central binding sites (shown as dashed blue lines in panel A with the central binding sites highlighted using the red cross symbols). The 1-D and 2-D maps were directly extracted from the ensemble averaged 3-D fraction of membrane potential map. The location of the phosphate atoms of the outer and inner lipid leaflets along the z axis was highlighted with dashed gray lines). d, Displacement of charge for prestin in the Up and Down I conformations at different transmembrane potentials. The gating charge between the two states is 0.38 +0.25Â eÂ calculated as the offset constant between the linear fits. (nâ€‰=â€‰3; data are meanâ€‰Â±â€‰SD; One-sided Studentâ€™s t-test; P=0.05). e, R399 in both monomers have been mutated to Q, S and E in different systems to see the contribution of R399 residue to the positive charge at the bilayer mid-plane using electrostatic calculations. R399 mutation to polar residues shows that R399 has almost ~40% contribution the positive charge of the field at the bilayer mid-plane. The remainder likely comes from the TM3-TM10 helical dipole and other positive charges in this area.


Extended Data Fig. 9 Whole cell patch-clamp electrophysiology of the mutations of different glycine residues along the TM6 helix.
All the individual data points, that has been averaged in Fig. 3f, has been presented here. Compared to wild-type prestin, mutation of evolutionary conserved glycine residues, a, G274 and G275 and b, G263, G265 and G270 largely affects the NLC.


Extended Data Table 1 Cryo-EM data collection, refinement and validation statisticsFull size table
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Supplementary Video 1
Electromotility measurements of HEK293 cells transfected with dolphin prestin using whole-cell patch-clamp electrophysiology. To evoke prestin-mediated electromotility, the membrane potential was held at âˆ’70â€‰mV; 10â€‰mV increase-in-amplitude voltage steps were applied up to the final steps, which was from +150â€‰mV to âˆ’140â€‰mV (Fig. 1b). The magenta square indicates the area that was chosen in our custom-written code to track the cellular displacements.


Supplementary Video 2
Structural changes from the expanded (down I) to the compact (up) conformation as a linear interpolation. The side front and top views of the dimer have been shown in one single frame. The anion-binding site is highlighted in red and Arg399 is shown in stick representation and the backbone has been coloured yellow. The videos were made in UCSF ChimeraX.
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