Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Carbon monoxide gas produced by a giant impact in the inner region of a young system


Models of terrestrial planet formation predict that the final stages of planetary assembly—lasting tens of millions of years beyond the dispersal of young protoplanetary disks—are dominated by planetary collisions. It is through these giant impacts that planets like the young Earth grow to their final mass and achieve long-term stable orbital configurations1. A key prediction is that these impacts produce debris. So far, the most compelling observational evidence for post-impact debris comes from the planetary system around the nearby 23-million-year-old A-type star HD 172555. This system shows large amounts of fine dust with an unusually steep size distribution and atypical dust composition, previously attributed to either a hypervelocity impact2,3 or a massive asteroid belt4. Here we report the spectrally resolved detection of a carbon monoxide gas ring co-orbiting with dusty debris around HD 172555 between about six and nine astronomical units—a region analogous to the outer terrestrial planet region of our Solar System. Taken together, the dust and carbon monoxide detections favour a giant impact between large, volatile-rich bodies. This suggests that planetary-scale collisions, analogous to the Moon-forming impact, can release large amounts of gas as well as debris, and that this gas is observable, providing a window into the composition of young planets.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Cleaned emission maps of the HD 172555 system.
Fig. 2: Mass–temperature degeneracy of the CO data.

Data availability

The ALMA programme number for the presented data is 2012.1.00437.S and data can be found in the online ALMA archive. The cleaned .fits files are available upon request from the corresponding author.

Code availability

RADMC-3D is available at and emcee is available at Custom code, including the ring model and non-LTE code, is available at


  1. 1.

    Morbidelli, A., Lunine, J. I., O’Brien, D. P., Raymond, S. N. & Walsh, K. J. Building terrestrial planets. Annu. Rev. Earth Planet. Sci. 40, 251–275 (2012).

    ADS  CAS  Article  Google Scholar 

  2. 2.

    Lisse, C. M. et al. Abundant circumstellar silica dust and SiO gas created by a giant hypervelocity collision in the 12 Myr HD 172555 system. Astrophys. J. 701, 2019–2032 (2009).

    ADS  CAS  Article  Google Scholar 

  3. 3.

    Johnson, B. C. et al. A self-consistent model of the circumstellar debris created by a giant hypervelocity impact in the HD 172555 system. Astrophys. J. 761, 45 (2012).

  4. 4.

    Wyatt, M. C. et al. Steady state evolution of debris disks around A stars. Astrophys. J. 663, 365–382 (2007).

    ADS  CAS  Article  Google Scholar 

  5. 5.

    Mamajek, E. E. & Bell, C. P. M. On the age of the β Pictoris moving group. Mon. Not. R. Astron. Soc. 445, 2169–2180 (2014).

    ADS  Article  Google Scholar 

  6. 6.

    David, T. J. & Hillenbrand, L. A. The ages of early-type stars: Strömgren photometric methods calibrated, validated, tested, and applied to hosts and prospective hosts of directly imaged exoplanets. Astrophys. J. 804, 146 (2015).

    ADS  Article  Google Scholar 

  7. 7.

    Prusti, T. et al. The Gaia mission. Astron. Astrophys. 595, A1 (2016).

    Article  Google Scholar 

  8. 8.

    Gaia Collaboration et al. Gaia Data Release 2: summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

  9. 9.

    Zuckerman, B., Song, I., Bessell, M. S. & Webb, R. A. The β Pictoris moving group. Astrophys. J. 562, L87–L90 (2001).

    ADS  Article  Google Scholar 

  10. 10.

    Cote, J. B and A type stars with unexpectedly large colour excesses at IRAS wavelengths. Astron. Astrophys. 181, 77–84 (1987).

    ADS  CAS  Google Scholar 

  11. 11.

    Smith, R., Wyatt, M. C. & Haniff, C. A. Resolving the terrestrial planet forming regions of HD113766 and HD172555 with MIDI. Mon. Not. R. Astron. Soc. 422, 2560–2580 (2012).

    ADS  Article  Google Scholar 

  12. 12.

    Engler, N., Schmid, H. M., Quanz, S. P., Avenhaus, H. & Bazzon, A. Detection of scattered light from the hot dust in HD 172555. Astron. Astrophys. 618, 1–15 (2018).

  13. 13.

    Chen, C. H. et al. Spitzer IRS spectroscopy of IRAS‐discovered debris disks. Astrophys. J. Suppl. Ser. 166, 351–377 (2006).

    ADS  CAS  Article  Google Scholar 

  14. 14.

    Gontcharov, G. A. Pulkovo compilation of radial velocities for 35 495 Hipparcos stars in a common system. Astron. Lett. 32, 759–771 (2006).

    ADS  Article  Google Scholar 

  15. 15.

    Kral, Q., Marino, S., Wyatt, M. C., Kama, M. & Matrà, L. Imaging [CI] around HD 131835: reinterpreting young debris discs with protoplanetary disc levels of CO gas as shielded secondary discs. Mon. Not. R. Astron. Soc. 489, 3670–3691 (2019).

    ADS  Google Scholar 

  16. 16.

    Kennedy, G. M. & Kenyon, S. J. Stellar mass dependent disk dispersal. Astrophys. J. 695, 1210–1226 (2009).

    ADS  CAS  Article  Google Scholar 

  17. 17.

    Ribas, Á., Bouy, H. & Merín, B. Protoplanetary disk lifetimes vs. stellar mass and possible implications for giant planet populations. Astron. Astrophys. 576, A52 (2015).

    ADS  Article  Google Scholar 

  18. 18.

    Wyatt, M. C., Panić, O., Kennedy, G. M. & Matrà, L. Five steps in the evolution from protoplanetary to debris disk. Astrophys. Space Sci. 357, 103 (2015).

    ADS  Article  Google Scholar 

  19. 19.

    Isella, A. et al. The Disk Substructures at High Angular Resolution Project (DSHARP) - IX: a high definition study of the HD 163296 planet forming disk. Astrophys. J. Lett. 869, L49 (2018).

  20. 20.

    Boehler, Y. et al. The complex morphology of the young disk MWC 758: spirals and dust clumps around a large cavity. Astrophys. J. 853, 162 (2017).

  21. 21.

    Morris, M. A. & Desch, S. J. Thermal histories of chondrules in solar nebula shocks. Astrophys. J. 722, 1474–1494 (2010).

    ADS  CAS  Article  Google Scholar 

  22. 22.

    Su, K. Y. L. et al. Mid-infrared studies of HD 113766 and HD 172555: assessing variability in the terrestrial zone of young exoplanetary systems. Astrophys. J. 898, 21 (2020).

  23. 23.

    Matrà, L., Öberg, K. I., Wilner, D. J., Olofsson, J. & Bayo, A. On the ubiquity and stellar luminosity dependence of exocometary CO gas: detection around M dwarf TWA 7. Astron. J. 157, 117 (2019).

  24. 24.

    Matrà, L., Panić, O., Wyatt, M. C. & Dent, W. R. F. CO mass upper limits in the Fomalhaut ring—the importance of NLTE excitation in debris discs and future prospects with ALMA. Mon. Not. R. Astron. Soc. 447, 3936–3947 (2015).

    ADS  Article  CAS  Google Scholar 

  25. 25.

    Marino, S. et al. Exocometary gas in the HD 181327 debris ring. Mon. Not. R. Astron. Soc. 460, 2933–2944 (2016).

    ADS  CAS  Article  Google Scholar 

  26. 26.

    Matrà, L. et al. Detection of exocometary CO within the 440 Myr-old Fomalhaut belt: a similar CO+CO2 ice abundance in exocomets and Solar System comets. Astrophys. J. 842, 9 (2017).

  27. 27.

    Kral, Q., Matrà, L., Wyatt, M. C. & Kennedy, G. M. Predictions for the secondary CO, C and O gas content of debris discs from the destruction of volatile-rich planetesimals. Mon. Not. R. Astron. Soc. 469, 521–550 (2017).

    ADS  CAS  Article  Google Scholar 

  28. 28.

    Zuckerman, B. & Song, I. A 40Myr old gaseous circumstellar disk at 49 CETI: massive CO-rich comet clouds at young A-type stars. Astrophys. J. 758, 77 (2012).

    ADS  Article  CAS  Google Scholar 

  29. 29.

    Prialnik, D. & Rosenberg, E. D. Can ice survive in main-belt comets? Long-term evolution models of comet 133P/Elst-Pizarro. Mon. Not. R. Astron. Soc. Lett. 399, L79–L83 (2009).

    ADS  Article  Google Scholar 

  30. 30.

    Snodgrass, C. et al. The Main Belt comets and ice in the Solar System. Astron. Astrophys. Rev. 25, 5 (2017).

    Google Scholar 

  31. 31.

    Marino, S. et al. ALMA observations of the η Corvi debris disc: inward scattering of CO-rich exocomets by a chain of 3-30 M planets? Mon. Not. R. Astron. Soc. 465, 2595–2615 (2017).

    ADS  CAS  Article  Google Scholar 

  32. 32.

    Benz, W., Anic, A., Horner, J. & Whitby, J. A. The origin of Mercury. Space Sci. Rev. 132, 189–202 (2007).

    ADS  CAS  Article  Google Scholar 

  33. 33.

    Chau, A., Reinhardt, C., Helled, R. & Stadel, J. Forming Mercury by giant impacts. Astrophys. J. 865, 35 (2018).

    ADS  Article  CAS  Google Scholar 

  34. 34.

    Canup, R. M. Simulations of a late lunar-forming impact. Icarus 168, 433–456 (2004).

    ADS  CAS  Article  Google Scholar 

  35. 35.

    Canup, R. M. Forming a moon with an Earth-like composition via a giant impact. Science 338, 1052-1055 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Mastrobuono-Battisti, A., Perets, H. B. & Raymond, S. N. A primordial origin for the compositional similarity between the Earth and the Moon. Nature 520, 212–215 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  37. 37.

    Marinova, M. M., Aharonson, O. & Asphaug, E. Mega-impact formation of the Mars hemispheric dichotomy. Nature 453, 1216–1219 (2008).

    ADS  CAS  PubMed  Article  Google Scholar 

  38. 38.

    Nimmo, F., Hart, S. D., Korycansky, D. G. & Agnor, C. B. Implications of an impact origin for the Martian hemispheric dichotomy. Nature 453, 1220–1223 (2008).

    ADS  CAS  PubMed  Article  Google Scholar 

  39. 39.

    Davies, J. H. Did a mega-collision dry Venus’ interior? Earth Planet. Sci. Lett. 268, 376–383 (2008).

    ADS  CAS  Article  Google Scholar 

  40. 40.

    Wyatt, M. C. & Jackson, A. P. Insights into planet formation from debris disks: II. giant impacts in extrasolar planetary systems. Space Sci. Rev. 205, 231–265 (2016).

    ADS  Article  Google Scholar 

  41. 41.

    Heays, A. N., Bosman, A. D. & van Dishoeck, E. F. Photodissociation and photoionisation of atoms and molecules of astrophysical interest. Astron. Astrophys. 602, A105 (2017).

  42. 42.

    Schlichting, H. E. & Mukhopadhyay, S. Atmosphere impact losses. Space Sci. Rev. 214, 34 (2018).

    ADS  Article  Google Scholar 

  43. 43.

    Kegerreis, J. A. et al. Atmospheric erosion by giant impacts onto terrestrial planets: a scaling law for any speed, angle, mass, and density. Astrophys. J. Lett. 901, L31 (2020).

    ADS  CAS  Article  Google Scholar 

  44. 44.

    Lammer, H. et al. Origin and evolution of the atmospheres of early Venus, Earth and Mars. Astron. Astrophys. Rev. 26, 2 (2018).

    ADS  Article  Google Scholar 

  45. 45.

    Biersteker, J. B. & Schlichting, H. E. Atmospheric mass-loss due to giant impacts: the importance of the thermal component for hydrogen–helium envelopes. Mon. Not. R. Astron. Soc. 485, 4454–4463 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Högbom, J. & Cornwell, T. Aperture synthesis with a non-regular distribution of interferometer baselines. Commentary. Astron. Astrophys. 500, 55–66 (2009).

    ADS  Google Scholar 

  47. 47.

    White, J. A. et al. The MESAS Project: long-wavelength follow-up observations of Sirius A. Astrophys. J. 875, 55 (2019).

    ADS  CAS  Article  Google Scholar 

  48. 48.

    Beckwith, S. V. W., Sargent, A. I., Chini, R. S. & Guesten, R. A survey for circumstellar disks around young stellar objects. Astron. J. 99, 924 (1990).

    ADS  Article  Google Scholar 

  49. 49.

    Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306–312 (2013).

    ADS  Article  Google Scholar 

  50. 50.

    Matrà, L. et al. Molecular reconnaissance of the β Pictoris gas disk with the SMA: a low HCN/(CO+CO2) outgassing ratio and predictions for future surveys. Astrophys. J. 853, 147 (2018).

  51. 51.

    Husser, T. O. et al. A new extensive library of PHOENIX stellar atmospheres and synthetic spectra. Astron. Astrophys. 553, A6 (2013).

    Article  CAS  Google Scholar 

  52. 52.

    Feroz, F., Hobson, M. P. & Bridges, M. MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics. Mon. Not. R. Astron. Soc. 398, 1601–1614 (2009).

    ADS  Article  Google Scholar 

  53. 53.

    Sepulveda, A. G. et al. The REASONS Survey: resolved millimeter observations of a large debris disk around the nearby F star HD 170773. Astrophys. J. 881, 84 (2019).

  54. 54.

    Yelverton, B., Kennedy, G. M., Su, K. Y. L. & Wyatt, M. C. A statistically significant lack of debris discs in medium separation binary systems. Mon. Not. R. Astron. Soc. 488, 3588–3606 (2019).

    ADS  Article  Google Scholar 

  55. 55.

    Marboeuf, U., Bonsor, A. & Augereau, J. C. Extrasolar comets: the origin of dust in exozodiacal disks? Planet. Space Sci. 133, 47–62 (2016).

    ADS  Article  Google Scholar 

  56. 56.

    Matrà, L. et al. An empirical planetesimal belt radius–stellar luminosity relation. Astrophys. J. 859, 72 (2018).

  57. 57.

    Marino, S., Bonsor, A., Wyatt, M. C. & Kral, Q. Scattering of exocomets by a planet chain: exozodi levels and the delivery of cometary material to inner planets. Mon. Not. R. Astron. Soc. 479, 1651–1671 (2018).

    ADS  CAS  Article  Google Scholar 

  58. 58.

    Biver, N. et al. The 1995–2002 long-term monitoring of comet C/1995 O1 (Hale-Bopp) at radio wavelength. Earth Moon Planets 90, 5–14 (2002).

    ADS  CAS  Article  Google Scholar 

  59. 59.

    Wyatt, M. C. et al. How observations of circumstellar disk asymmetries can reveal hidden planets: pericenter glow and its application to the HR 4796 disk. Astrophys. J. 527, 918–944 (1999).

    ADS  Article  Google Scholar 

  60. 60.

    Wyatt, M. C., Bonsor, A., Jackson, A. P., Marino, S. & Shannon, A. How to design a planetary system for different scattering outcomes: giant impact sweet spot, maximizing exocomets, scattered discs. Mon. Not. R. Astron. Soc. 464, 3385–3407 (2017).

    ADS  Article  Google Scholar 

Download references


We are grateful to J. Biersteker for discussions on the liberation of atmospheres in the aftermath of giant impacts. This paper makes use of ALMA data ADS/JAO.ALMA\#2012.1.00437.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), NSC and ASIAA (Taiwan) and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. K.I.Ö. acknowledges support from the Simons Foundation (SCOL \#321183). G.M.K. is supported by the Royal Society as a Royal Society University Research Fellow.

Author information




T.S. led the optically thin modelling and discussion. L.M. led the radiative transfer modelling. T.S. and L.M. were involved in data reduction, processing and writing of the manuscript. All authors contributed to discussions of the results and commented on the manuscript.

Corresponding author

Correspondence to Tajana Schneiderman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Inseok Song and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Posterior probability distributions for the model parameters obtained from the emcee fitting process.

All parameters are well constrained, with best-fit values listed in Extended Data Table 1. This model was fitted to spectral data retaining original channel widths, assumed a Gaussian prior on the inclination, and assumed a stellar mass of 1.76 M.

Extended Data Table 1 Best fit values (50 ± 34 percentile) to the optically thin model of gas emission. Left column indicates values derived from the MCMC run where a Gaussian prior was applied to the inclination. Right column indicates values derived from the MCMC run where flat priors were applied to all model parameters

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schneiderman, T., Matrà, L., Jackson, A.P. et al. Carbon monoxide gas produced by a giant impact in the inner region of a young system. Nature 598, 425–428 (2021).

Download citation


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing