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            Abstract
Water is one of the most important, yet least understood, liquids in nature. Many anomalous properties of liquid water originate from its well-connected hydrogen bond network1, including unusually efficient vibrational energy redistribution and relaxation2. An accurate description of the ultrafast vibrational motion of water molecules is essential for understanding the nature of hydrogen bonds and many solution-phase chemical reactions. Most existing knowledge of vibrational relaxation in water is built upon ultrafast spectroscopy experiments2,3,4,5,6,7. However, these experiments cannot directly resolve the motion of the atomic positions and require difficult translation of spectral dynamics into hydrogen bond dynamics. Here, we measure the ultrafast structural response to the excitation of the OH stretching vibration in liquid water with femtosecond temporal and atomic spatial resolution using liquid ultrafast electron scattering. We observed a transient hydrogen bond contraction of roughly 0.04â€‰Ã… on a timescale of 80 femtoseconds, followed by a thermalization on a timescale of approximately 1 picosecond. Molecular dynamics simulations reveal the need to treat the distribution of the shared proton in the hydrogen bond quantum mechanically to capture the structural dynamics on femtosecond timescales. Our experiment and simulations unveil the intermolecular character of the water vibration preceding the relaxation of the OH stretch.
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                    Fig. 1: Experiment overview.


Fig. 2: Transient hydrogen bond strengthening.


Fig. 3: First shell hydrogen atom dynamics.


Fig. 4: Thermalization.
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              Experimental data were generated at the MeV-UED facility at the SLAC National Accelerator Laboratory. Data behind each figure are available in Zenodo with the identifier https://doi.org/10.5281/zenodo.4678299. Raw datasets are available from the corresponding authors on reasonable request.Â Source data are provided with this paper.
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Extended data figures and tables

Extended Data Fig. 1 Extra information for data interpretation.
a, Ab initio simulation of the inelastic and elastic scattering signal change for vOHâ€‰=â€‰1 in comparison to vOHâ€‰=â€‰0. The simulation is performed on a single water molecule with OH bond lengths adjusted to the equilibrium length for each vibrational state as predicted in ref. 5 (for more details, seeÂ Methods). b, Spectrum of the second and the third harmonics of the pump laser. c, Experimental g2 and temperature evolution up to 100Â ps. d, Damped QÎ”S from experimental data. This is related to Fig. 1c by the damping term \({e}^{-0.03{Q}^{2}}\); equation (3) inÂ Methods
Source data.


Extended Data Fig. 2 Wigner sampling.
a, The three lowest eigenstates (coloured lines) and eigenvalues (horizontal grey lines) of the Lippincottâ€“Schroeder model potential (black line). Inset, the probability distribution of the vOHâ€‰=â€‰0 and vOHâ€‰=â€‰1 states, Î¼ and Ïƒ represent mean and standard deviation. b,Â c, Wigner distribution for vOHâ€‰=â€‰0 (b) and vOHâ€‰=â€‰1 (c). The region of phase space with negative values of the vOHâ€‰=â€‰1 distribution (orange shades) was excluded from the sampling. Note the different colour gradient used for negative function values. Lippincottâ€“Schroeder model (ROOâ€‰=â€‰2.85â€‰Ã…) is used for sampling of the initial displacements and velocities along the OH bonds of the excited molecules
Source data.


Extended Data Fig. 3 Probability density from classical and Wigner sampling.
a, Wigner sampling. Magenta represents vOHâ€‰=â€‰0, yellow represents vOHâ€‰=â€‰1. b, Classical sampling. Magenta and yellow represent unexcited and excited molecules, respectively, calculated by averaging over the final 10Â fs window during the excitation phase. Dashed black line represents the equilibrium water before excitation. The vertical dotted lines represent the equilibrium distance for each curve, andâ€‰Î¼ and Ïƒ represent the mean and standard deviation of each curve, respectively
Source data.


Extended Data Fig. 4 Examples of pair distances shift.
a, gOO(r) around the first OO peak for four different Î”R1. b, Î”PDFOO for three different Î”R1. c, Î”PDFOH for three different Î”r2. d, Î”PDFOH for three different Î”r3
Source data.


Extended Data Fig. 5 CPDF analysis.
a, A comparison of experimental and simulated CPDF. The overall scaling factor is achieved by matching the height of the first OO between experimental and simulated curves. The simulation is a 275 K water box under equilibrium condition. b, The simulated elastic and inelastic components of the CPDF, the inelastic component is concentrated to rÂ <Â 2.5â€‰Ã…. Exp., experimental; Sim., simulated. c, CPDF for five delay windows (see the key) in full r range. d, CPDF for five delay windows (see the key) around the second OO shell. The peak height around 4.6â€‰Ã… is used to extract g2 for Fig. 4a
Source data.


Extended Data Fig. 6 Comparison of equilibrium Î”PDF simulation.
Î”PDF from experiment at 2.2Â ps (blue with error bars), simulation using Tip4p-Ew force field (orange) and simulation using machine-learning force field (yellow)
Source data.


Extended Data Fig. 7 Î”PDF simulated using different methods.
aâ€“c, Î”PDF consistency. a, The Î”PDF simulated using the conventional method (that is, by first simulating the electron scattering pattern using equation (7), then transforming to real space using equation (3)). b, The Î”PDF simulated by directly applying equation (4), and smoothed by convolution with a Gaussian kernel with a FWHM of 0.53â€‰Ã…. The weight of OO, OH and HH pairs are chosen to be 1, 0.4 and 0.16, respectively, obtained by atomic scattering cross section and the relative number of each types of atom pairs. The 0.53â€‰Ã… FWHM of the Gaussian Kernel is obtained using 2Ï€/Qmax, where Qmaxâ€‰=â€‰11.8Ã…âˆ’1 is the maximum Q range in this experiment. c, The Î”PDF simulated by directly applying equation (4) without Gaussian smoothing. The vertical scales of all subpanels are identical. dâ€“f, Comparison of the Î”PDF in quantum simulations (d), classical simulations with hÎ½ excitation (e) and classical simulations with 3/2 hÎ½ excitation (f)
Source data.


Extended Data Fig. 8 Simulated instantaneous kinetic temperature evolution.
a,Â b, Classical excitation during the 100Â fs excitation phase (a), and during the 3Â ps relaxation phase (b). c,Â d, Quantum excitation, with vOHâ€‰=â€‰1 (c) and vOHâ€‰=â€‰0 (d). Tstretch and Trot are defined in equation (11) and equation (12). In c, the subscript â€˜Stretch1â€™ and â€˜Rot1â€™ indicate the OH bond corresponding to vOHâ€‰=â€‰1 Wigner sampling, and â€˜Stretch2â€™ and â€˜Rot2â€™ indicate the OH bond corresponding to vOHâ€‰=â€‰0 Wigner sampling. The superscript â€˜excitedâ€™ indicates Wigner sampling. Excited and unexcited molecules are calculated separately. The initial temperature before excitation is 300 K
Source data.


Extended Data Fig. 9 Comparison of NNP-based 2D OH stretching vibrational modes in gasÂ phase and frozenÂ phonon liquid phase.
aâ€“h, The lowest vibrational eigenstates \(({n}_{1},{n}_{2})\)for a representative configuration (bond angle of 104.4Â°) among the 200 2D potential energy surfaces considered (aâ€“c, eâ€“g; dashed black lines indicate symmetric and antisymmetric displacements); and distribution of vibrational frequencies (defined as \(\varDelta {\nu }_{{n}_{1},{n}_{2}}={\nu }_{{n}_{1},{n}_{2}}-{\nu }_{0,0}\)) for the two lowest OH stretching vibrationally excited states for the 200 configurations (d,Â h). The distribution in the gasÂ phase originates from the variation in the bond angle. The vertical lines indicate the experimental gas-phase stretch frequencies67 and \(\varDelta {\nu }_{1}\) from the 1D Lippincottâ€“Schroeder model, respectively. i, Comparison of 1D OH stretch potentials for gasÂ phase and liquid water as obtained from the NNP (blue and red, respectively) and the Lippincottâ€“Schroeder model (black). The transparent thin lines correspond to the underlying 2Â Ã—Â 200 NNP replicates while the corresponding thick lines indicate the average potentials
Source data.


Extended Data Fig. 10 Zero-point energy leakage time.
aâ€“c, Comparison of the OO (a), OH (b) and HH (c) RDFs computed during an equilibrium run for a classical distribution of positions and momenta (NVT), during the coupling with the quantum GLE thermostat, from ab initio PIMD simulations63 and measured from neutron diffraction experiments68. The inset in b is a zoom-in on the OH bond peak where, due to the absence of experimental data to compare with, we reported the comparison with DFT-based PIMD simulations. d, Kinetic energies computed during the coupling with the quantum thermostat. e, Kinetic energies computed during the NVE simulations. The inset in d shows a temporal fitting of the stretching temperature decay. f, Time-resolved RDF computed during the NVE relaxation. The black curve refers to the NVT-computed RDF, obtained at Tâ€‰=â€‰300 K. The inset shows the shift of the R1 distance during the system relaxation
Source data.
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