Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Unveiling African rainforest composition and vulnerability to global change


Africa is forecasted to experience large and rapid climate change1 and population growth2 during the twenty-first century, which threatens the world’s second largest rainforest. Protecting and sustainably managing these African forests requires an increased understanding of their compositional heterogeneity, the environmental drivers of forest composition and their vulnerability to ongoing changes. Here, using a very large dataset of 6 million trees in more than 180,000 field plots, we jointly model the distribution in abundance of the most dominant tree taxa in central Africa, and produce continuous maps of the floristic and functional composition of central African forests. Our results show that the uncertainty in taxon-specific distributions averages out at the community level, and reveal highly deterministic assemblages. We uncover contrasting floristic and functional compositions across climates, soil types and anthropogenic gradients, with functional convergence among types of forest that are floristically dissimilar. Combining these spatial predictions with scenarios of climatic and anthropogenic global change suggests a high vulnerability of the northern and southern forest margins, the Atlantic forests and most forests in the Democratic Republic of the Congo, where both climate and anthropogenic threats are expected to increase sharply by 2085. These results constitute key quantitative benchmarks for scientists and policymakers to shape transnational conservation and management strategies that aim to provide a sustainable future for central African forests.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Floristic composition of central African forests.
Fig. 2: Predicted functional composition of central African forests.
Fig. 3: Main forest types across central Africa and their functional composition.
Fig. 4: Predicted vulnerability of central African tree communities to global changes.

Data availability

All maps and data used for this article are accessible online in a public repository at Raw floristic data are, however, archived in a private data repository, owing to the highly sensitive nature of commercial inventory data, and access may be granted for research purposes using the form provided in the public repository.

Code availability

R scripts are available at


  1. 1.

    Diffenbaugh, N. S. & Giorgi, F. Climate change hotspots in the CMIP5 global climate model ensemble. Clim. Change 114, 813–822 (2012).

    ADS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2017 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP/248 (2017).

  3. 3.

    Malhi, Y., Adu-Bredu, S., Asare, R. A., Lewis, S. L. & Mayaux, P. African rainforests: past, present and future. Phil. Trans. R. Soc. B 368, 20120312 (2013).

    Google Scholar 

  4. 4.

    James, R., Washington, R. & Rowell, D. P. Implications of global warming for the climate of African rainforests. Phil. Trans. R. Soc. B 368, 20120298 (2013).

    Google Scholar 

  5. 5.

    Abernethy, K., Maisels, F. & White, L. J. Environmental issues in Central Africa. Annu. Rev. Environ. Resour. 41, 1–33 (2016).

    Google Scholar 

  6. 6.

    Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).

    ADS  CAS  Google Scholar 

  7. 7.

    De Wasseige, C., Tadoum, M., Atyi, E. & Doumenge, C. The Forests of the Congo Basin: Forests and Climate Change (Weyrich, 2015).

  8. 8.

    Stévart, T. et al. A third of the tropical African flora is potentially threatened with extinction. Sci. Adv. 5, eaax9444 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Parmentier, I. et al. The odd man out? Might climate explain the lower tree α-diversity of African rain forests relative to Amazonian rain forests? J. Ecol. 95, 1058–1071 (2007).

    Google Scholar 

  10. 10.

    Réjou-Méchain, M. et al. Regional variation in tropical forest tree species composition in the Central African Republic: an assessment based on inventories by forest companies. J. Trop. Ecol. 24, 663–674 (2008).

    Google Scholar 

  11. 11.

    Réjou-Méchain, M. et al. Tropical tree assembly depends on the interactions between successional and soil filtering processes. Glob. Ecol. Biogeogr. 23, 1440–1449 (2014).

    Google Scholar 

  12. 12.

    Fayolle, A. et al. Geological substrates shape tree species and trait distributions in African moist forests. PLoS One 7, e42381 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Fayolle, A. et al. Patterns of tree species composition across tropical African forests. J. Biogeogr. 41, 2320–2331 (2014).

    Google Scholar 

  14. 14.

    Droissart, V. et al. Beyond trees: biogeographical regionalization of tropical Africa. J. Biogeogr. 45, 1153–1167 (2018).

    Google Scholar 

  15. 15.

    Sosef, M. S. et al. Exploring the floristic diversity of tropical Africa. BMC Biol. 15, 15 (2017).

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Parmentier, I. et al. Predicting alpha diversity of African rain forests: models based on climate and satellite-derived data do not perform better than a purely spatial model. J. Biogeogr. 38, 1164–1176 (2011).

    Google Scholar 

  17. 17.

    Bry, X., Trottier, C., Verron, T. & Mortier, F. Supervised component generalized linear regression using a PLS-extension of the fisher scoring algorithm. J. Multivariate Anal. 119, 47–60 (2013).

    MathSciNet  MATH  Google Scholar 

  18. 18.

    ter Steege, H. et al. Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443, 444–447 (2006).

    ADS  Google Scholar 

  19. 19.

    Slik, J. W. et al. Soils on exposed Sunda shelf shaped biogeographic patterns in the equatorial forests of Southeast Asia. Proc. Natl Acad. Sci. USA 108, 12343–12347 (2011).

    ADS  CAS  Google Scholar 

  20. 20.

    Philippon, N. et al. The light-deficient climates of western Central African evergreen forests. Environ. Res. Lett. 14, 034007 (2019).

    ADS  CAS  Google Scholar 

  21. 21.

    Sullivan, M. J. P. et al. Long-term thermal sensitivity of Earth’s tropical forests. Science 368, 869–874 (2020).

    ADS  CAS  Google Scholar 

  22. 22.

    Beale, C. M., Lennon, J. J. & Gimona, A. Opening the climate envelope reveals no macroscale associations with climate in European birds. Proc. Natl Acad. Sci. USA 105, 14908–14912 (2008).

    ADS  CAS  Google Scholar 

  23. 23.

    Deblauwe, V. et al. Remotely sensed temperature and precipitation data improve species distribution modelling in the tropics. Glob. Ecol. Biogeogr. 25, 443–454 (2016).

    Google Scholar 

  24. 24.

    Maguire, K. C. et al. Controlled comparison of species- and community-level models across novel climates and communities. Proc. R. Soc. B 283, 20152817 (2016).

    Google Scholar 

  25. 25.

    Morin-Rivat, J. et al. Present-day central African forest is a legacy of the 19th century human history. eLife 6, e20343 (2017).

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Ricklefs, R. E. Intrinsic dynamics of the regional community. Ecol. Lett. 18, 497–503 (2015).

    Google Scholar 

  27. 27.

    Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).

    Google Scholar 

  28. 28.

    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    ADS  Google Scholar 

  29. 29.

    Rüger, N. et al. Demographic trade-offs predict tropical forest dynamics. Science 368, 165–168 (2020).

    ADS  Google Scholar 

  30. 30.

    Ouédraogo, D.-Y. et al. The determinants of tropical forest deciduousness: disentangling the effects of rainfall and geology in central Africa. J. Ecol. 104, 924–935 (2016).

    Google Scholar 

  31. 31.

    Shipley, B. From Plant Traits to Vegetation Structure: Chance and Selection in the Assembly of Ecological Communities (Cambridge University Press, 2010).

  32. 32.

    Feeley, K. J. & Silman, M. R. Biotic attrition from tropical forests correcting for truncated temperature niches. Glob. Change Biol. 16, 1830–1836 (2010).

    ADS  Google Scholar 

  33. 33.

    Parry, M. et al. Climate Change 2007 – Impacts, Adaptation, and Vulnerability: Contribution of Working Group II to the Fourth Assessment Report of the IPCC (Cambridge University Press, 2007).

  34. 34.

    Foden, W. B. et al. Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS One 8, e65427 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Lachenaud, O., Stévart, T., Ikabanga, D., Ndjabounda, E. C. N. & Walters, G. The littoral forests of the Libreville area (Gabon) and their importance for conservation: description of a new endemic species (Rubiaceae). Plant Ecol. Evol. 146, 68–74 (2013).

    Google Scholar 

  36. 36.

    Aguirre-Gutiérrez, J. et al. Drier tropical forests are susceptible to functional changes in response to a long-term drought. Ecol. Lett. 22, 855–865 (2019).

    Google Scholar 

  37. 37.

    Claeys, F. et al. Climate change would lead to a sharp acceleration of Central African forests dynamics by the end of the century. Environ. Res. Lett. 14, 044002 (2019).

    ADS  CAS  Google Scholar 

  38. 38.

    McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).

    CAS  Google Scholar 

  39. 39.

    Zhou, L. et al. Widespread decline of Congo rainforest greenness in the past decade. Nature 509, 86–90 (2014).

    ADS  CAS  Google Scholar 

  40. 40.

    Purvis, A. Phylogenetic approaches to the study of extinction. Annu. Rev. Ecol. Evol. Syst. 39, 301–319 (2008).

    Google Scholar 

  41. 41.

    Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. USA 96, 1463–1468 (1999).

    ADS  CAS  Google Scholar 

  42. 42.

    Neves, D. M. et al. Evolutionary diversity in tropical tree communities peaks at intermediate precipitation. Sci. Rep. 10, 1188 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Letcher, S. G. Phylogenetic structure of angiosperm communities during tropical forest succession. Proc. R. Soc. B 277, 97–104 (2010).

    Google Scholar 

  44. 44.

    Letouzey, R. Notice de la carte phytogéographique du Cameroun au 1:500000 (Institut de la Carte Internationale de la végétation Toulouse-France et Institut de la recherche agronomique (Herbier National) Yaoundé-Cameroun, 1985).

  45. 45.

    Boulvert, Y. Carte phytogéographique de la République Centrafricaine (feuille oust–feuille est) à 1 000 000 (Editions de l’ORSTOM, 1986).

  46. 46.

    Fyllas, N. M., Quesada, C. A. & Lloyd, J. Deriving plant functional types for Amazonian forests for use in vegetation dynamics models. Perspect. Plant Ecol. Evol. Syst. 14, 97–110 (2012).

    Google Scholar 

  47. 47.

    Mitchard, E. T. A. et al. Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites. Glob. Ecol. Biogeogr. 23, 935–946 (2014).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Visconti, P., Pressey, R. L., Bode, M. & Segan, D. B. Habitat vulnerability in conservation planning—when it matters and how much. Conserv. Lett. 3, 404–414 (2010).

    Google Scholar 

  49. 49.

    Putz, F. E. et al. Sustaining conservation values in selectively logged tropical forests: the attained and the attainable. Conserv. Lett. 5, 296–303 (2012).

    Google Scholar 

  50. 50.

    Gourlet-Fleury, S. et al. Tropical forest recovery from logging: a 24 year silvicultural experiment from Central Africa. Phil. Trans. R. Soc. B 368, 20120302 (2013).

    Google Scholar 

  51. 51.

    Clark, C. J., Poulsen, J. R., Malonga, R. & Elkan, P. W. Jr. Logging concessions can extend the conservation estate for Central African tropical forests. Conserv. Biol. 23, 1281–1293 (2009).

    CAS  Google Scholar 

  52. 52.

    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    ADS  CAS  Google Scholar 

  53. 53.

    Réjou-Méchain, M. et al. Detecting large-scale diversity patterns in tropical trees: can we trust commercial forest inventories? For. Ecol. Manage. 261, 187–194 (2011).

    Google Scholar 

  54. 54.

    African Plant Database v.3.4.0 (Conservatoire et Jardin Botaniques de la Ville de Genève and South African National Biodiversity Institute, Pretoria, accessed 10 February 2017).

  55. 55.

    The Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 161, 105–121 (2009).

    Google Scholar 

  56. 56.

    Dauby, G. et al. RAINBIO: a mega-database of tropical African vascular plants distributions. PhytoKeys 74, 1–18 (2016).

    Google Scholar 

  57. 57.

    Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).

    Google Scholar 

  58. 58.

    Zanne, A. E. et al. Data from: towards a worldwide wood economic spectrum. Dryad (2009).

  59. 59.

    Gourlet-Fleury, S. et al. Environmental filtering of dense‐wooded species controls above‐ground biomass stored in African moist forests. J. Ecol. 99, 981–990 (2011).

    Google Scholar 

  60. 60.

    Westoby, M. & Wright, I. J. Land-plant ecology on the basis of functional traits. Trends Ecol. Evol. 21, 261–268 (2006).

    Google Scholar 

  61. 61.

    Chave, J. et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 20, 3177–3190 (2014).

    ADS  Google Scholar 

  62. 62.

    Bénédet, F. et al. CoForTraits, African plant traits information database v.1.0, (2013).

  63. 63.

    Davies, T. J. et al. Phylogenetic conservatism in plant phenology. J. Ecol. 101, 1520–1530 (2013).

    Google Scholar 

  64. 64.

    Cramer, W. et al. Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Glob. Change Biol. 7, 357–373 (2001).

    ADS  Google Scholar 

  65. 65.

    Menzel, A. Phenology: its importance to the global change community. Clim. Change 54, 379 (2002).

    Google Scholar 

  66. 66.

    Borchert, R., Rivera, G. & Hagnauer, W. Modification of vegetative phenology in a tropical semi-deciduous forest by abnormal drought and rain. Biotropica 34, 27–39 (2002).

    Google Scholar 

  67. 67.

    Kraft, N. J. B., Valencia, R. & Ackerly, D. D. Functional traits and niche-based tree community assembly in an Amazonian forest. Science 322, 580–582 (2008).

    ADS  CAS  Google Scholar 

  68. 68.

    Schamp, B. S. & Aarssen, L. W. The assembly of forest communities according to maximum species height along resource and disturbance gradients. Oikos 118, 564–572 (2009).

    Google Scholar 

  69. 69.

    New, M., Lister, D., Hulme, M. & Makin, I. A high-resolution data set of surface climate over global land areas. Clim. Res. 21, 1–25 (2002).

    Google Scholar 

  70. 70.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surface for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Google Scholar 

  71. 71.

    Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 150066 (2015).

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Nachtergaele, F. et al. The harmonized world soil database. In Proc. 19th World Congress of Soil Science, Soil Solutions for a Changing World (eds Gilkes, R. & Prakongkep, N.) 34–37 (International Union of Soil Sciences, 2010).

  73. 73.

    Woolmer, G. et al. Rescaling the human footprint: a tool for conservation planning at an ecoregional scale. Landsc. Urban Plan. 87, 42–53 (2008).

    Google Scholar 

  74. 74.

    Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Geldmann, J., Joppa, L. N. & Burgess, N. D. Mapping change in human pressure globally on land and within protected areas. Conserv. Biol. 28, 1604–1616 (2014).

    Google Scholar 

  76. 76.

    Linard, C., Gilbert, M., Snow, R. W., Noor, A. M. & Tatem, A. J. Population distribution, settlement patterns and accessibility across Africa in 2010. PLoS One 7, e31743 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Lloyd, C. T. et al. Global spatio-temporally harmonised datasets for producing high-resolution gridded population distribution datasets. Big Earth Data 3, 108–139 (2019).

    Google Scholar 

  78. 78.

    Boulesteix, A.-L. & Strimmer, K. Partial least squares: a versatile tool for the analysis of high-dimensional genomic data. Brief. Bioinform. 8, 32–44 (2007).

    CAS  Google Scholar 

  79. 79.

    Carrascal, L. M., Galván, I. & Gordo, O. Partial least squares regression as an alternative to current regression methods used in ecology. Oikos 118, 681–690 (2009).

    Google Scholar 

  80. 80.

    Tenenhaus, M. La Régression PLS: Théorie et Pratique (Editions Technip, 1998).

  81. 81.

    Sabatier, R., Lebreton, J. D. & Chessel, D. in Multiway Data Analysis (eds Coppi, R. & Bolasco, S.) 341–352 (1989).

  82. 82.

    Ter Braak, C. J. F. in Theory and Models In Vegetation Science (eds Prentice, I. C. & van der Maarel, E.) 69–77 (Springer, 1987).

  83. 83.

    Bry, X. & Verron, T. THEME: THEmatic model exploration through multiple co-structure maximization. J. Chemometr. 29, 637–647 (2015).

    CAS  Google Scholar 

  84. 84.

    Cornu, G., Mortier, F., Trottier, C. & Bry, X. SCGLR: supervised component generalized linear regression. R version 3.0 (2016).

  85. 85.

    Ward, J. H. Jr. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963).

    MathSciNet  Google Scholar 

  86. 86.

    Ploton, P. et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 11, 4540 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gGussian finite mixture models. R J. 8, 289–317 (2016).

    PubMed  PubMed Central  Google Scholar 

  88. 88.

    Dormann, C. F. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography 30, 609–628 (2007).

    Google Scholar 

  89. 89.

    Renard, D. et al. RGeostats: the geostatistical package v.11.0. 1 (MINES ParisTech, 2014).

  90. 90.

    Platts, P. J., Omeny, P. A. & Marchant, R. AFRICLIM: high-resolution climate projections for ecological applications in Africa. Afr. J. Ecol. 53, 103–108 (2015).

    Google Scholar 

  91. 91.

    Janssens, S. B. et al. A large-scale species level dated angiosperm phylogeny for evolutionary and ecological analyses. Biodivers. Data J. 8, e39677 (2020).

    PubMed  PubMed Central  Google Scholar 

  92. 92.

    Abouheif, E. A method for testing the assumption of phylogenetic independence in comparative data. Evol. Ecol. Res. 1, 895–909 (1999).

    Google Scholar 

  93. 93.

    Chao, A., Chiu, C.-H. & Jost, L. Phylogenetic diversity measures based on Hill numbers. Phil. Trans. R. Soc. B 365, 3599–3609 (2010).

    Google Scholar 

  94. 94.

    R Core Team. R: a language and environment for statistical computing. (R Foundation for Statistical Computing, 2017).

  95. 95.

    Chessel, D., Dufour, A. B. & Thioulouse, J. The ade4 package – I: one-table methods. R News 4, 5–10 (2004).

    Google Scholar 

  96. 96.

    Lafarge, T. & Pateiro-Lopez, B. alphashape3d: implementation of the 3D alpha-shape for the reconstruction of 3D sets from a point cloud. R version 1.3.1 (2017).

  97. 97.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

  98. 98.

    Hijmans, R. J. raster: geographic data analysis and modelling. R version 3.4-5 (2017).

  99. 99.

    Marcon, E. & Hérault, B. entropart: An R package to measure and partition diversity. J. Stat. Softw. 67, 1–26 (2015).

    Google Scholar 

  100. 100.

    Dufrêne, M. & Legendre, P. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997).

    Google Scholar 

Download references


We thank the 105 forest companies that provided access, albeit restricted, to their inventory data for research purposes and members of the central African plot network (, Y. Yalibanda, F. Allah-Barem, F. Baya, F. Boyemba, M. Mbasi Mbula, P. Berenger, M. Mazengue, V. Istace, I. Zombo, E. Forni, Nature+ and the CEB-Precious Woods company for giving access to the scientific inventories described in Supplementary Fig. 4, some of which were funded by the AFD and the FFEM (for example, DynAfFor and P3FAC projects). We thank J. Chave, P. Couteron, S. Lewis and M. Tadesse for their comments and discussions on previous versions, B. Sultan for useful discussions on climate projections, O. J. Hardy for advice on phylogenetical analyses, B. Locatelli for advice on vulnerability analyses, G. Vieilledent for discussions on the human-induced forest-disturbance intensity index and A. Stokes for English editing. This work was supported by the CoForTips project (ANR‐12‐EBID‐0002) funded by the ERA-NET BiodivERsA, with the national funders ANR, BELSPO and FWF, as part of the 2012 BiodivERsA call for research proposals, the GAMBAS project funded by the French National Research Agency (ANR-18-CE02-0025) and the project 3DForMod funded by the UE FACCE ERA-GAS consortium (ANR-17-EGAS-0002-01). This study is a contribution to the research program of LMI DYCOFAC (Dynamique des écosystèmes continentaux d’Afrique Centrale en contexte de changements globaux).

Author information




Conceptualization: M.R.-M., F.M., R.P. and S.G.-F.; data curation: G.C. and F.B.; formal analysis: M.R.-M. and F.M.; project administration: C.G.; writing (original draft): M.R.-M., F.M., R.P. and S.G.-F.; writing (review and editing): all authors.

Corresponding author

Correspondence to Maxime Réjou-Méchain.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Jonas Geldmann, Marion Pfeifer, Philip Platts and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Study area and sampling plots.

In green, the current distribution of tropical forests following the ESA-CCI landcover product (v.1.6), with a dark-green-to-white gradient representing anthropogenic pressure (see Methods) and non-forested areas represented in beige. The sampling grid cells (n = 1,571 10 × 10-km2 grid cells) are in black and the flooding forests, as proposed by the ESA-CCI landcover, are in blue.

Extended Data Fig. 2 Taxon CA planes 1–2 and 1–3 with labels for the 12 most representative taxa on each axis.

a, Planes 1–2. b, Planes 1–3. Colour code corresponds to that reported in Fig. 1. The first eigenvalues are reported in b, highlighting in black the first three axes. Taxon codes and scores of the 193 taxa are provided in Supplementary Table 2.

Extended Data Fig. 3 Individual predicted floristic gradients illustrated by the three first axes of the correspondence analysis performed on predicted taxon abundances.

ac, CA axis 1 (a), CA axis 2 (b) and CA axis 3 (c). A composite map of these three axes is given in Fig. 1 and the corresponding taxon CA planes are provided in Extended Data Fig. 2.

Extended Data Fig. 4 Plans 1–2, 1–3 and 2–3 of the SCGLR CCs.

a, CC1 and CC2. b, CC1 and CC3. c, CC2 and CC3. All climatic variables with a correlation of less than 0.75 with the two components (dashed circle) were excluded for the sake of clarity. For abbreviations, see Extended Data Table 2.

Extended Data Fig. 5 Spatial cross-validation results of the predictions of functional assemblages.

ac, The observed and predicted community weighted mean trait values within the 1,571 10x10-km2 grid cells are given for wood density (a), deciduousness (b) and maximum diameter (c). The 1:1 line is displayed in red.

Extended Data Fig. 6 Projected changes under the RCP 4.5 scenario in 2085 of the climatic conditions of the 10 forest types.

Areas for which climate models predict similar climatic components (CCs) values to those currently found within forest types (in black) are illustrated with a colour gradient indicating the level of agreement amongst the 18 climate models (as a percentage; no colour indicates that none of the original 18 climate models predicted similar conditions). More specifically, we used 3D concave hull (alpha shape) models to assess where the combinations of current CCs corresponding to each forest type are predicted to be represented in 2085.

Extended Data Fig. 7 The vulnerability map under two different RCP scenarios and for two different years.

ad, Vulnerability maps under RCP 4.5 in 2055 (a), RCP 8.5 in 2055 (b), RCP 4.5 in 2085 (c) and RCP 8.5 in 2085 (d). As can be seen, the predicted vulnerability is little affected by the IPCC scenario chosen because it expresses a relative vulnerability over the study area and, if different scenarios predict different amplitudes of climate change, spatial patterns of climate exposure remains similar (see Methods).

Extended Data Fig. 8 Current and projected anthropogenic pressure over central Africa.

a, b, Current (a) and projected (b) anthropogenic pressure predicted from our index of human-induced forest-disturbance intensity.

Extended Data Fig. 9 Protected area network and areas dedicated to logging activities in central Africa.

The protected area network is shown in blue; areas dedicated to logging are shown in orange and red. Data on protected areas were obtained from the World Database on Protected Areas (, last accessed 14 August 2018), excluding marine, hunting and game-oriented areas, except for the Democratic Republic of the Congo, for which data from the World Resource Institute were used and downloaded from ArcGIS hub (, last accessed 1 June 2019). Logging activity data were provided by the Observatoire des Forêts d’Afrique Centrale based on an unpublished work completed in June 2018, except for the Democratic Republic of the Congo, for which more updated data (June 2019) were provided by the AGEDUFOR national project. Areas in orange illustrate forest concessions that are known to have, or to be in the process of having, an officially validated sustainable forest management plan. Red areas illustrate forest areas that are currently dedicated to logging but that either do not have an official management plan or have an uncertain status.

Extended Data Table 1 Characteristics of the floristic groups
Extended Data Table 2 Climatic predictors

Supplementary information

Supplementary Information

This file contains Supplementary Figs 1-9 and Supplementary Tables 1-2.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Réjou-Méchain, M., Mortier, F., Bastin, JF. et al. Unveiling African rainforest composition and vulnerability to global change. Nature 593, 90–94 (2021).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing