Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-order superlattices by rolling up van der Waals heterostructures

Abstract

Two-dimensional (2D) materials1,2 and the associated van der Waals (vdW) heterostructures3,4,5,6,7 have provided great flexibility for integrating distinct atomic layers beyond the traditional limits of lattice-matching requirements, through layer-by-layer mechanical restacking or sequential synthesis. However, the 2D vdW heterostructures explored so far have been usually limited to relatively simple heterostructures with a small number of blocks8,9,10,11,12,13,14,15,16,17,18. The preparation of high-order vdW superlattices with larger number of alternating units is exponentially more difficult, owing to the limited yield and material damage associated with each sequential restacking or synthesis step8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29. Here we report a straightforward approach to realizing high-order vdW superlattices by rolling up vdW heterostructures. We show that a capillary-force-driven rolling-up process can be used to delaminate synthetic SnS2/WSe2 vdW heterostructures from the growth substrate and produce SnS2/WSe2 roll-ups with alternating monolayers of WSe2 and SnS2, thus forming high-order SnS2/WSe2 vdW superlattices. The formation of these superlattices modulates the electronic band structure and the dimensionality, resulting in a transition of the transport characteristics from semiconducting to metallic, from 2D to one-dimensional (1D), with an angle-dependent linear magnetoresistance. This strategy can be extended to create diverse 2D/2D vdW superlattices, more complex 2D/2D/2D vdW superlattices, and beyond-2D materials, including three-dimensional (3D) thin-film materials and 1D nanowires, to generate mixed-dimensional vdW superlattices, such as 3D/2D, 3D/2D/2D, 1D/2D and 1D/3D/2D vdW superlattices. This study demonstrates a general approach to producing high-order vdW superlattices with widely variable material compositions, dimensions, chirality and topology, and defines a rich material platform for both fundamental studies and technological applications.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Schematic illustration of the fabrication process of roll-up vdW superlattices.
Fig. 2: Structural characterizations of SnS2/WSe2 roll-ups and high-order vdW superlattices.
Fig. 3: Electrical transport and magnetotransport properties of the SnS2/WSe2 roll-up vdW superlattices.
Fig. 4: Multi-dimensional roll-up vdW superlattices.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    CAS  PubMed  Google Scholar 

  2. Saito, Y., Nojima, T. & Iwasa, Y. Highly crystalline 2D superconductors. Nat. Rev. Mater. 2, 16094 (2017).

    CAS  ADS  Google Scholar 

  3. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

    CAS  ADS  PubMed  Google Scholar 

  4. Haigh, S. J. et al. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 11, 764–767 (2012).

    CAS  ADS  PubMed  Google Scholar 

  5. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS  PubMed  Google Scholar 

  6. Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

    CAS  ADS  Google Scholar 

  7. Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229–233 (2017).

    ADS  PubMed  Google Scholar 

  8. Britnell, L. et al. Field-effect tunneling transistor based on vertical grapheme heterostructures. Science 335, 947–950 (2012).

    CAS  ADS  PubMed  Google Scholar 

  9. Yu, W. J. et al. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 12, 246–252 (2013).

    CAS  ADS  PubMed  Google Scholar 

  10. Yu, W. J. et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 8, 952–958 (2013).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. Fang, H. et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc. Natl Acad. Sci. USA 111, 6198–6202 (2014).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  12. Lee, C. H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014).

    CAS  ADS  PubMed  Google Scholar 

  13. Withers, F. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015).

    CAS  ADS  PubMed  Google Scholar 

  14. Rivera, P. et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351, 688–691 (2016).

    CAS  ADS  PubMed  Google Scholar 

  15. Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 360, 1218–1222 (2018).

    CAS  ADS  PubMed  Google Scholar 

  16. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    CAS  ADS  PubMed  Google Scholar 

  17. Bae, S. H. et al. Integration of bulk materials with two-dimensional materials for physical coupling and applications. Nat. Mater. 18, 550–560 (2019).

    CAS  ADS  PubMed  Google Scholar 

  18. Sutter, P., Wimer, S. & Sutter, E. Chiral twisted van der Waals nanowires. Nature 570, 354–357 (2019).

    CAS  ADS  PubMed  Google Scholar 

  19. Kim, K. K., Lee, H. S. & Lee, Y. H. Synthesis of hexagonal boron nitride heterostructures for 2D van der Waals electronics. Chem. Soc. Rev. 47, 6342–6369 (2018).

    CAS  PubMed  Google Scholar 

  20. Chen, P., Zhang, Z. W., Duan, X. D. & Duan, X. F. Chemical synthesis of two-dimensional atomic crystals, heterostructures and superlattices. Chem. Soc. Rev. 47, 3129–3151 (2018).

    CAS  PubMed  Google Scholar 

  21. Zhao, M. et al. Large-scale chemical assembly of atomically thin transistors and circuits. Nat. Nanotechnol. 11, 954–959 (2016).

    CAS  ADS  PubMed  Google Scholar 

  22. Duan, X. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 9, 1024–1030 (2014).

    CAS  ADS  PubMed  Google Scholar 

  23. Gong, Y. J. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014).

    CAS  ADS  PubMed  Google Scholar 

  24. Huang, C. et al. Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nat. Mater. 13, 1096–1101 (2014).

    CAS  PubMed  Google Scholar 

  25. Shi, Y. M., Li, H. N. & Li, L.-J. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem. Soc. Rev. 44, 2744–2756 (2015).

    CAS  PubMed  Google Scholar 

  26. Yu, Y. F. et al. Equally efficient interlayer exciton relaxation and improved absorption in epitaxial and nonepitaxial MoS2/WS2 heterostructures. Nano Lett. 15, 486–491 (2015).

    CAS  ADS  PubMed  Google Scholar 

  27. Zhang, J. et al. Observation of strong interlayer coupling in MoS2/WS2 heterostructures. Adv. Mater. 28, 1950–1956 (2016).

    CAS  PubMed  Google Scholar 

  28. Yang, T. F. et al. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p–n junctions. Nat. Commun. 8, 1906 (2017).

    PubMed  PubMed Central  ADS  Google Scholar 

  29. Li, F. et al. Rational kinetics control toward universal growth of 2D vertically stacked heterostructures. Adv. Mater. 31, 1901351 (2019).

    Google Scholar 

  30. Zhang, Z. et al. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 357, 788–792 (2017).

    CAS  PubMed  Google Scholar 

  31. Sahoo, P. K., Memaran, S., Xin, Y., Balicas, L. & Gutiérrez, H. R. One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy. Nature 553, 63–67 (2018).

    CAS  ADS  PubMed  Google Scholar 

  32. Xie, S. et al. Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain. Science 359, 1131–1136 (2018).

    CAS  ADS  PubMed  Google Scholar 

  33. Wang, C. et al. Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018).

    CAS  ADS  PubMed  Google Scholar 

  34. Zhang, Z. W. et al. Ultrafast growth of large single crystals of monolayer WS2 and WSe2. Natl. Sci. Rev. 7, 737–744 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Halim, U. et al. A rational design of cosolvent exfoliation of layered materials by directly probing liquid–solid interaction. Nat. Commun. 4, 2213 (2013).

    MathSciNet  PubMed  ADS  Google Scholar 

  36. Cui, X. et al. Rolling up transition metal dichalcogenide nanoscrolls via one drop of ethanol. Nat. Commun. 9, 1301 (2018).

    PubMed  PubMed Central  ADS  Google Scholar 

  37. Ping, Y., Rocca, D. & Galli, G. Electronic excitations in light absorbers for photoelectrochemical energy conversion: first principles calculations based on many body perturbation theory. Chem. Soc. Rev. 42, 2437–2469 (2013).

    CAS  PubMed  Google Scholar 

  38. Yan, J., Thygesen, K. S. & Jacobsen, K. W. Nonlocal screening of plasmons in grapheneby semiconducting and metallic substrates: first-principles calculations. Phys. Rev. Lett. 106, 146803 (2011).

    ADS  PubMed  Google Scholar 

  39. Ugeda, M. M. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014).

    CAS  ADS  PubMed  Google Scholar 

  40. Zeng, H. L. et al. Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci. Rep. 3, 1608 (2013).

    PubMed  PubMed Central  Google Scholar 

  41. Gonzalez, J. M. & Oleynik, I. I. Layer-dependent properties of SnS2 and SnSe2 two-dimensional materials. Phys. Rev. B 94, 125443 (2016).

    ADS  Google Scholar 

  42. Heremans, J., Thrush, C. M., Lin, Y. M., Cronin, S. B. & Dresselhaus, M. S. Transport properties of antimony nanowires. Phys. Rev. B 63, 085406 (2001).

    ADS  Google Scholar 

  43. Onsager, L. Reciprocal relations in irreversible processes I. Phys. Rev. 37, 405–426 (1931).

    CAS  MATH  ADS  Google Scholar 

  44. Wang, X. L., Du, Y., Dou, S. X. & Zhang, C. Room temperature giant and linear magnetoresistance in topological insulator Bi2Te3 nanosheets. Phys. Rev. Lett. 108, 266806 (2012).

    ADS  PubMed  Google Scholar 

  45. Wang, X. J., Yates, J. R., Souza, I. & Vanderbilt, D. Ab initio calculation of the anomalous Hall conductivity by Wannier interpolation. Phys. Rev. B 74, 195118 (2006).

    ADS  Google Scholar 

  46. Qiao, Z. H. et al. Quantum anomalous Hall effect in graphene proximity coupled to an antiferromagnetic insulator. Phys. Rev. Lett. 112, 116404 (2014).

    ADS  PubMed  Google Scholar 

  47. Khouri, T. et al. Linear magnetoresistance in a quasifree two-dimensional electron gas in an ultrahigh mobility GaAs quantum well. Phys. Rev. Lett. 117, 256601 (2016).

    CAS  ADS  PubMed  Google Scholar 

  48. Xiao, C. et al. Linear magnetoresistance induced by intra-scattering semiclassics of Bloch electrons. Phys. Rev. B 101, 201410 (2020).

    CAS  ADS  Google Scholar 

  49. Xiang, R. et al. One-dimensional van der Waals heterostructures. Science 367, 537–542 (2020).

    CAS  ADS  PubMed  Google Scholar 

  50. Guo, C. H., Xu, J. Q., Rocca, D. & Ping, Y. Substrate screening approach for quasiparticle energies of two-dimensional interfaces with lattice mismatch. Phys. Rev. B 102, 205113 (2020).

    CAS  ADS  Google Scholar 

  51. Zhu, J. T. et al. One-pot selective epitaxial growth of large WS2/MoS2 lateral and vertical heterostructures. J. Am. Chem. Soc. 142, 16276–16284 (2020).

    CAS  PubMed  Google Scholar 

  52. Liu, H. et al. Growth of large-area homogeneous monolayer transition-metal disulfides via a molten liquid intermediate process. ACS Appl. Mater. Interfaces 12, 13174–13181 (2020).

    PubMed  Google Scholar 

  53. Zhang, C. X. et al. Systematic study of electronic structure and band alignment of monolayer transition metal dichalcogenides in Van der Waals heterostructures. 2D Mater. 4, 015026 (2017).

    Google Scholar 

  54. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    CAS  ADS  Google Scholar 

  55. Gianozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Google Scholar 

  56. Schlipf, M. & Gygi, F. Optimization algorithm for the generation of ONCV pseudopotentials. Comput. Phys. Commun. 196, 36–44 (2015).

    CAS  MATH  ADS  Google Scholar 

  57. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  PubMed  ADS  Google Scholar 

  58. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    CAS  PubMed  Google Scholar 

  59. Marini, A., Hogan, C., Grüning, M. & Varsano, D. yambo: an ab initio tool for excited state calculations. Comput. Phys. Commun. 180, 1392–1403 (2009).

    CAS  ADS  Google Scholar 

  60. Ismail-Beigi, S. Truncation of periodic image interactions for confined systems. Phys. Rev. B 73, 233103 (2006).

    ADS  Google Scholar 

  61. Giacomini, R. & Martino, J. A. Modeling silicon on insulator MOS transistors with nonrectangular-gate layouts. J. Electrochem. Soc. 153, G218 (2006).

    CAS  Google Scholar 

  62. Ford, A. C. et al. Diameter-dependent electron mobility of InAs nanowires. Nano Lett. 9, 360–365 (2009).

    CAS  ADS  PubMed  Google Scholar 

Download references

Acknowledgements

Xidong Duan acknowledges support from the National Key R&D Program of the Ministry of Science and Technology of China (number 2018YFA0703704), the National Natural Science Foundation of China (numbers 51872086, 51991343) and the Hunan Key Laboratory of Two-Dimensional Materials (grant number 2018TP1010) for the work conducted at Hunan University. Y.Z. acknowledges support by the National Natural Science Foundation of China (numbers 51991340, 51991342). The cross-sectional STEM experiments were partly conducted using the facilities of the Irvine Materials Research Institute (IMRI) at the University of California Irvine. I.S. and Z.A. thank the Deanship of Scientific Research at King Saud University for funding of this research through grant PEJP-17-01.

Author information

Authors and Affiliations

Authors

Contributions

B.Z., D.S. and Bailing Li synthesized the vdW heterostructures and developed the rolling-up process to produce vdW superlattices. B.Z., Z.W., Q.Q. and Y.L. performed device fabrication and electrical characterizations. X. Yang, Zucheng Zhang, R. Wu, J.L., H.M., I.S., Z.A. and Y.H. contributed to device fabrication or analysis. J.X., C.G. and Y.P. conducted the theoretical calculations and wrote the related discussions. Z.L., Xingxu Yan, X.P., X.C., F.W., Y.Q. and Y.Z. contributed to the cross-sectional STEM characterizations. Zhengwei Zhang and Bo Li participated in the TEM analysis. B.Z., Z.W, Xidong Duan and Xiangfeng Duan co-wrote the manuscript with input from all of the authors. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Xidong Duan or Xiangfeng Duan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Hui-Ming Cheng, Jeehwan Kim and Mauricio Terrones for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Growth of SnS2/WSe2 vdW heterostructures.

a, Pre-grown WSe2 monolayer. bh, The top-layer SnS2 nucleates and grows at the edge (bd) or the corner (eh) of the pre-grown WSe2 monolayer and expands laterally to eventually achieve full coverage of monolayer SnS2 on monolayer WSe2 (d, h). Scale bars, 20 μm.

Extended Data Fig. 2 Atomic structure and differential charge density calculated for the SnS2/WSe2 heterobilayer.

a, TEM image of the SnS2/WSe2 heterobilayer. The moiré pattern shows a lattice constant of 3.34 nm, and the lattice consists of 10 × 10 WSe2 and 9 × 9 SnS2. Scale bar, 2 nm. b, c, Top (b) and side (c) view of the atomic structure and the differential charge density calculated for the SnS2/WSe2 heterobilayer. The amaranth and blue isosurfaces represent negative and positive charge density difference, respectively, between the bilayer vdW heterostructure and the separated layers. The isosurface value is chosen as 0.0005e au−3.

Extended Data Fig. 3 Optical spectra of the SnS2/WSe2 systems.

a, Photoluminescence spectra of a typical WSe2 monolayer (black line), a SnS2/WSe2 heterobilayer (blue line) and a SnS2/WSe2 vdW superlattice (red line). b, Raman spectra of a typical WSe2 monolayer (black line), SnS2/WSe2 heterobilayers (blue line) and a SnS2/WSe2 vdW superlattice (red line).

Extended Data Fig. 4 Schematic illustration and electrical characterizations of SnS2/WSe2 roll-up FETs.

a, SnS2/WSe2 heterobilayer FET. b, SnS2/WSe2 roll-up FET. The pink colour represents WSe2, yellow denotes SnS2 and gold represents the Cr/Au contact pads. c, d, Statistical distribution of mobility (c) and carrier concentration (d) of SnS2/WSe2 heterobilayer FETs and SnS2/WSe2 roll-up FETs. e, Normalized magnetoresistance of the roll-up vdW superlattices with different rotation angles θ at T = 3 K. Both the shapes and amplitudes overlap when the field is normalized to Bsinθ.

Extended Data Fig. 5 Various 2D/2D roll-up vdW superlattices.

a, Optical microscopy image of MoS2/WS2 heterobilayer. Scale bar, 10 μm. b, SEM image of MoS2/WS2 roll-up vdW superlattice. Scale bar, 1 μm. c, Raman spectra of a typical MoS2/WS2 heterobilayer (black line) and a MoS2/WS2 roll-up vdW superlattice (red line). The peaks at 353 cm−1 and 381 cm−1 correspond to the \({{\rm{E}}}_{{\rm{2g}}}^{1}\) mode of WS2 and MoS2, and the peaks at 415 cm−1 and 402 cm−1 correspond to the A1g mode of WS2 and MoS2, respectively. d, EDS mapping images of Mo, W and S for the MoS2/WS2 roll-up vdW superlattice. Scale bars, 200 nm. e, f, Optical microscopy image of MoSe2/WSe2 heterobilayer (e) and MoSe2/WSe2 roll-up vdW superlattice (f). Scale bars, 5 μm. g, Raman spectra of a typical MoSe2/WSe2 heterobilayer (black line) and a MoSe2/WSe2 roll-up vdW superlattice (red line). The peaks at 246 cm−1 and 282 cm−1 correspond to the \({{\rm{E}}}_{{\rm{2g}}}^{1}\) mode of WSe2 and MoSe2, respectively, and the peak at 237 cm−1 to the A1g mode of MoSe2. h, EDS mapping images of Mo, W and Se for the MoSe2/WSe2 roll-up vdW superlattice. Scale bars, 100 nm. i, Optical microscopy image of the SnS2/MoS2 heterobilayer. Scale bar, 5 μm. j, SEM image of the SnS2/MoS2 roll-up vdW superlattice. Scale bar, 200 nm. k, EDS elemental analysis of the SnS2/MoS2 roll-up vdW superlattice. l, EDS mapping images of Mo, Sn and S for the SnS2/MoS2 roll-up vdW superlattice. Scale bars, 200 nm. m, n, Optical microscopy image of the NbSe2/MoSe2 vdW heterostructure (m) and the NbSe2/MoSe2 roll-up vdW superlattice (n). Scale bars, 5 μm. o, Raman spectra of the NbSe2/MoSe2 vdW heterostructure (black line) and the NbSe2/MoSe2 roll-up vdW superlattice (red line), showing resonance peaks at 235 cm−1 and 283 cm−1, corresponding to the A1g and \({{\rm{E}}}_{{\rm{2g}}}^{1}\) modes of MoSe2, respectively, and at 248 cm−1, corresponding to the \({{\rm{E}}}_{{\rm{2g}}}^{1}\) mode of NbSe2. p, Optical microscopy image of the Cr5Te8/WSe2 vdW heterostructure. Scale bar, 10 μm. q, SEM image of the Cr5Te8/WSe2 roll-up vdW superlattice. Scale bar, 1 μm. r, Raman spectroscopy of the Cr5Te8 nanosheet (blue line), Cr5Te8/WSe2 vdW heterostructure (black line) and Cr5Te8/WSe2 roll-up vdW superlattices (red line). The two characteristic peaks at 128 cm−1 and 142 cm−1 correspond to Cr5Te8, and the characteristic peak at 250 cm−1 corresponds to WSe2. s, Optical microscopy image of the SnSe2/WSe2 heterobilayer. Scale bar, 20 μm. t, SEM image of the SnSe2/WSe2 roll-up vdW superlattice. Scale bar, 1 μm. u, Raman spectra of the SnSe2/WSe2 heterobilayers (black line) and SnSe2/WSe2 roll-up vdW superlattice (red line), showing a resonance peak at 188 cm−1, corresponding to the A1g mode of SnSe2, and at 251 cm−1, corresponding to the \({{\rm{E}}}_{{\rm{2g}}}^{1}\) mode of WSe2. v, w, Optical microscopy images of the In2Se3/WSe2 heterobilayer. Scale bars, 10 μm. x, SEM image of a typical In2Se3/WSe2 roll-up vdW superlattice. Scale bar, 1 μm.

Extended Data Fig. 6 Optical spectra of Al2O3/WSe2 systems.

a, b, Raman (a) and photoluminescence (b) spectra of monolayer (1L) WSe2 (black line), Al2O3/1L WSe2 (blue line) heterostructure and Al2O3/1L WSe2 vdW superlattice (red line). c, d, Raman (c) and photoluminescence (d) spectra of bilayer (2L) WSe2 (black line), Al2O3/2L WSe2 (blue line) heterostructure and Al2O3/2L WSe2 vdW superlattice (red line).

Extended Data Fig. 7 Selected-area electron diffraction (SAED) images of WSe2 roll-ups with different chiral angles.

The measured distance between spots confirms that the lattice constant of WSe2 is 0.33 nm. The SAED patterns for different WSe2 roll-ups show distinct features, with two sets of hexagonal patterns with a rotation angle of 2θ, where θ is the chiral angle of the roll-up. The chiral angles of the four roll-ups are determined to be θ = 2.5° (a), θ = 8° (b), θ = 16° (c) and θ = 20.5° (d). Scale bars, 5 nm−1.

Extended Data Fig. 8 SAED images of SnS2/WSe2 vdW superlattice roll-ups with different chiral angles.

The SAED patterns for different SnS2/WSe2 roll-ups clearly show the SnS2 diffraction pattern (red) and the WSe2 diffraction pattern (blue). The distance measured between spots further confirms that the lattice constant of WSe2 is 0.33 nm and that of SnS2 is 0.37 nm. The diffraction spots of SnS2 and WSe2 are well aligned, suggesting epitaxial growth of the heterostructure. The chiral angles are measured to be θ = 10° (a), θ = 15° (b), θ = 19° (c), θ = 22° (d), θ = 24° (e) and θ = 25° (f). Scale bars, 5 nm−1.

Extended Data Fig. 9 Moiré patterns of SnS2/WSe2 roll-up vdW superlattice.

a, Low-resolution TEM image of a SnS2/WSe2 roll-up. Scale bar, 1 μm. b, SAED image of the SnS2/WSe2 roll-up. Scale bar, 5 nm−1. The white dashed double arrow indicates the axis direction of the roll-up, and the two red dashed lines indicate the major axis of the top wall and bottom wall, which forms a chiral angle of θ = ±22° with the roll-up axis. c, High-angle annular dark-field STEM image of the periodic moiré superlattices of the SnS2/WSe2 vdW superlattice roll-up; the yellow dashed rhombus is the corresponding moiré unit cells with moiré superlattice constant LM = 3.34 nm. Scale bar, 2 nm. The moiré superlattice results from the SnS2/WSe2 heterobilayer on the top wall of the roll-up. The red dashed line indicates a major axis of the top-wall SnS2/WSe2 heterobilayer and has a chiral angle of θ = 22° from the roll-up axis (white dashed double arrow). d, The corresponding atomic model of the heterobilayer moiré superlattices of SnS2/WSe2. Scale bar, 2 nm. Lattice constants of 0.33 nm and 0.37 nm were used for WSe2 and SnS2, respectively. e, TEM image of the periodic moiré superlattices of the SnS2/WSe2 roll-up. The blue dashed rhombus is the corresponding moiré unit cell with LM = 2.29 nm. Scale bar, 2 nm. The moiré superlattice mainly results from WSe2 in the top wall and the WSe2 bottom wall, with a folding (twist) angle of 44° between the top and bottom WSe2. The two red dashed lines indicate the major axes of the top and bottom walls, which form a chiral angle of ±22° with the roll-up axis (white dashed double arrow). f, The corresponding atomic model of the moiré superlattices of WSe2/WSe2 homostructure with a folding angle of 44°. Scale bar, 2 nm.

Extended Data Fig. 10 The capillary-force-driven rolling-up process used to produce roll-up vdW superlattices.

a, b, Optical microscopy images of SnS2/WSe2 roll-up obtained with ethanol–water (E/W) (a) and ethanol–water–ammonia (E/W/A) (b) solutions. Scale bars, 20 μm. c, Statistical distribution of the yield of roll-ups. FR, full roll-ups (for example, b); PR, partial roll-ups (for example, a); NR, no roll-ups.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, B., Wan, Z., Liu, Y. et al. High-order superlattices by rolling up van der Waals heterostructures. Nature 591, 385–390 (2021). https://doi.org/10.1038/s41586-021-03338-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-021-03338-0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing