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            Abstract
MoirÃ© superlattices1,2 have recently emerged as a platform upon which correlated physics and superconductivity can be studied with unprecedented tunability3,4,5,6. Although correlated effects have been observed in several other moirÃ© systems7,8,9,10,11,12,13,14,15,16,17, magic-angle twisted bilayer graphene remains the only one in which robust superconductivity has been reproducibly measured4,5,6. Here we realize a moirÃ© superconductor in magic-angle twisted trilayer graphene (MATTG)18, which has better tunability of its electronic structure and superconducting properties than magic-angle twisted bilayer graphene. Measurements of the Hall effect and quantum oscillations as a function of density and electric field enable us to determine the tunable phase boundaries of the system in the normal metallic state. Zero-magnetic-field resistivity measurements reveal that the existence of superconductivity is intimately connected to the broken-symmetry phase that emerges from two carriers per moirÃ© unit cell. We find that the superconducting phase is suppressed and bounded at the Van Hove singularities that partially surround the broken-symmetry phase, which is difficult to reconcile with weak-coupling Bardeenâ€“Cooperâ€“Schrieffer theory. Moreover, the extensive in situ tunability of our system allows us to reach the ultrastrong-coupling regime, characterized by a Ginzburgâ€“Landau coherence length that reaches the average inter-particle distance, and very large TBKT/TF values, in excess of 0.1 (where TBKT and TF are the Berezinskiiâ€“Kosterlitzâ€“Thouless transition and Fermi temperatures, respectively). These observations suggest that MATTG can be electrically tuned close to the crossover to a two-dimensional Boseâ€“Einstein condensate. Our results establish a family of tunable moirÃ© superconductors that have the potential to revolutionize our fundamental understanding of and the applications for strongly coupled superconductivity.
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                    Fig. 1: Electronic structure and robust superconductivity in mirror-symmetric MATTG.[image: ]


Fig. 2: MATTG phase diagrams.[image: ]


Fig. 3: Ultrastrong-coupling superconductivity and proximity to the BCSâ€“BEC crossover.[image: ]


Fig. 4: Connection between superconductivity and carriers emerging from the |Î½|Â =Â 2 phase.[image: ]
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Extended data figures and tables

Extended Data Fig. 1 Stacking order in MATTG.
a, b, Illustrations of A-tw-A stacking (a) and A-tw-B stacking (b), where â€˜twâ€™ denotes the middle twisted layer (L2, orange) and A/B represents the relative stacking order between the topmost (L3, green) and bottommost (L1, blue) layers. câ€“f, Continuum-model bandstructures of A-tw-A stacked (c,Â d) and A-tw-B stacked (e,Â f)Â MATTG at zero (c,Â e) and finite (d,Â f) displacement fields. The twist angle is Î¸Â =Â 1.57Â° for all plots. gâ€“j, Calculated Landau level sequence corresponding to the bands in câ€“f. The size of the dots represents the size of the Landau level gaps in the Hofstadter spectrum. For A-tw-A stacking, the major sequence of filling factors near the charge neutrality is Â±2, Â±6, Â±10,Â â€¦, regardless of the displacement field, whereas for A-tw-B stacking the Landau levels evolve into a symmetry-broken sequence that has 0,Â Â±8 as the dominant filling factors with largest gaps in a finite displacement field. An anisotropy term of Î²Â =Â âˆ’0.01 is included in all of the above calculations (see Methods). k,Â l, Experimentally measured Landau levels in MATTG near the charge neutrality. We find the strongest sequence of Â±2, Â±6, Â±10,Â â€¦ at both DÂ =Â 0 and D/Îµ0Â = 0.77Â VÂ nmâˆ’1, consistent with the A-tw-A stacking scenario.


Extended Data Fig. 2 Device schematics and device optical picture.
a, Our device consists of hBN-encapsulated MATTG etched into a Hall bar, Cr/Au contacts on the edge, and top/bottom metallic gates. For transport measurements, we measure current I, longitudinal voltage Vxx, and transverse voltage Vxy, while tuning the density Î½ and displacement field D by applying top gate voltage Vtg and bottom gate voltage Vbg. b, Optical picture of devices A and B. Device C is lithographically similar.


Extended Data Fig. 3 Robust superconductivity in other MATTG devices (devices B and C).
a, Rxxâ€“T curve. b, Vxxâ€“I and dVxx/dIâ€“I curves. c, Iâ€“B map in device B with a smaller-than-magic-angle Î¸Â â‰ˆÂ 1.44Â°. In this device, maximum TBKTÂ â‰ˆÂ 0.73Â K. The choice of Î½ is to display the Fraunhofer-like Josephson interference, which demonstrates the superconducting phase coherence. dâ€“f, As in aâ€“c, for device C, with a twist angle Î¸Â â‰ˆÂ 1.4Â°. Device C has a maximum TBKT of ~0.68Â K. f shows a regular B-suppression of Ic with B. Both devices show sharp peaks in dVxx/dI at their critical currents.


Extended Data Fig. 4 Vxxâ€“I curves and critical current Ic in MATTG.
a, Forward (red) and backward (blue) sweeps of Vxxâ€“I curves for the optimal point Î½Â =Â âˆ’2.4 and D/Îµ0Â = âˆ’0.44Â VÂ nmâˆ’1. Inset, A clear hysteresis loop exists in the curve at IÂ â‰ˆÂ 550â€“600Â nA. b, Map of Ic versus Î½ and D in the major superconducting regions. c, Evolution of Ic over D at Î½Â =Â âˆ’2.4, showing that Ic initially increases as finite D is applied, and quickly decreases beyond local maxima near |D|/Îµ0Â â‰ˆ 0.48Â VÂ nmâˆ’1. d, Ic versus D at Î½Â =Â +2.26 shows that the maximum Ic occurs near |D|/Îµ0Â â‰ˆ 0.71Â VÂ nmâˆ’1, after which Ic quickly decreases. The modulation of superconducting strength in D may be due to change in the band flatness, as well as the interactions with the electrons in the Dirac bands. eâ€“g, Vxxâ€“I and dVxx/dIâ€“I curves for certain points in superconducting domes near Î½Â = âˆ’2Â +Â Î´Â (e), Î½Â = +2Â â€“Â Î´Â (f), and Î½Â = +2Â +Â Î´Â (g), all showing sharp peaks in dVxx/dI at the critical current.


Extended Data Fig. 5 Rxx versus Î½ at TÂ =Â 70Â mK, 5 K and 10 K.
aâ€“d, Measured at D/Îµ0Â = 0.77Â VÂ nmâˆ’1Â (a), D/Îµ0Â = 0.52Â VÂ nmâˆ’1Â (b), D/Îµ0Â = 0.26Â VÂ nmâˆ’1 (c) and D/Îµ0Â = 0Â VÂ nmâˆ’1 (d).


Extended Data Fig. 6 Hall density analysis.
aâ€“c, Linecuts of Rxx, Rxy and Î½H (right axis) versus Î½ at representative D from high to zero, showing the bounding of major superconducting phases within the Hall density features. Vertical red, yellow, and dark blue bars denote â€˜gap/Diracâ€™, â€˜resetâ€™ and â€˜VHSâ€™ features, respectively, and the light-blue regions denote superconductivity. Purple dashed lines show the expected Hall density. We note that there are some small regions right before Î½Â =Â +1 and Î½Â =Â +2 where for certain D values there are signatures of a more complex behaviour in Î½H, with VHSs possibly very close to the â€˜resetsâ€™, as shown in Fig. 2b. d, The Hall density Î½H extracted from smaller magnetic fields of BÂ â‰ˆ 0.1â€“0.3Â T reveals a VHS boundary close to the weak superconducting phase boundary near Î½Â = âˆ’2Â +Â Î´, which is absent in the Hall density shown in aâ€“c and Fig. 2b extracted from a higher magnetic field of BÂ â‰ˆ âˆ’1.5Â TÂ toÂ 1.5Â T. e, Rxx in the same region as shown in d, where the superconducting boundary is close to the VHSs. All measurements are performed at the base temperature TÂ â‰ˆÂ 70Â mK. SC, superconducting.


Extended Data Fig. 7 Quantum oscillations and effective-mass analysis.
All data shown here are measured at D/Îµ0Â = âˆ’0.44Â VÂ nmâˆ’1. a,Â b, Quantum oscillations at Î½Â =Â âˆ’2.86 (a) and Î½Â =Â âˆ’2.5 (b) at different T. Grey dashed lines show the peaks used for analysis. Inset, Fit to the Lifshitzâ€“Kosevich formula for the extraction of the effective mass, yielding m*/meÂ = 1.25Â Â±Â 0.13 (a) and m*/meÂ = 0.95Â Â±Â 0.03 (b). c,Â d, Quantum oscillations sampled at coarser points in T for the same Î½ as in a,Â b. Extracted effective-mass values with these coarser data are m*/meÂ = 1.2Â Â±Â 0.2 (c) and m*/meÂ = 0.96Â Â±Â 0.09 (d), matching the values from a,Â b within the uncertainty. e, Quantum oscillations at Î½Â =Â âˆ’2.4 (optimal doping). f, Lifshitzâ€“Kosevich fits for the data shown in câ€“e, showing Î´R normalized with its value at the lowest temperature. The peaks chosen for extraction are marked with triangles in câ€“e. Amp., amplitude; a.u., arbitrary units.


Extended Data Fig. 8 Analysis of the Ginzburg-Landau coherence length.
a,Â b, Superconducting transitions at perpendicular magnetic fields from BÂ =Â 0Â T to BÂ =Â 0.2Â T (40Â mT between curves) for Î½Â = âˆ’2Â âˆ’Â Î´ (Î½Â =Â âˆ’2.4; a) and Î½Â = âˆ’2Â +Â Î´ (Î½Â =Â âˆ’1.84; b), from which the Ginzburgâ€“Landau coherence length Î¾GL is extracted. D/Îµ0Â =Â âˆ’0.44Â VÂ nmâˆ’1 for both plots. Inset shows \({T}_{{\rm{c}}}^{50 \% }\), \({T}_{{\rm{c}}}^{40 \% }\) and \({T}_{{\rm{c}}}^{30 \% }\) as a function of B, from which we extracted the coherence length Î¾GL as 9.4Â nm, 12.4Â nm and 16.1Â nm, respectively, for Î½Â = âˆ’2Â âˆ’Â Î´. For Î½Â = âˆ’2Â +Â Î´, we obtained 38.0Â nm, 39.1Â nm and 37.1Â nm, respectively. We note that for Î½Â = âˆ’2Â âˆ’Â Î´, the Rxxâ€“T curves develop an extra transition (â€˜kneeâ€™) below Tc at finite B, which is possibly related to the melting transition between a vortex solid and a vortex liquid48.


Extended Data Fig. 9 Landau fans for intermediate D.
a, b, Landau fans on the hole-doped (a) and electron-doped sides (b). They show the evolution between small D and large D, which exhibits a hybridization of the features. In a, the Landau fan diagram at D/Îµ0Â = âˆ’0.34Â VÂ nmâˆ’1 for the hole-doped side shows the fans emanating from all integer fillings. An inward-facing fan from Î½Â =Â âˆ’4 starts developing, which meets the outward-facing fan from Î½Â =Â âˆ’3. Note also the appearance of an inward-facing fan from Î½Â =Â âˆ’2, which meets the outward-facing fan from Î½Â =Â âˆ’1. These observations agree with the formation of VHSs around these two regions in the intermediate |D|, where the electron-like carriers become hole-like, as illustrated in Fig. 4d, and identified in Fig. 2b. A small region of superconductivity starts appearing at Î½Â = âˆ’2Â +Â Î´ while the carriers from Î½Â =Â âˆ’2 are present, as shown in Fig. 2a. In b, the Landau fan diagram at D/Îµ0Â = âˆ’0.52Â VÂ nmâˆ’1 on the electron-doped side shows similar VHSs between Î½Â â‰ˆÂ +1â€“2 and Î½Â â‰ˆÂ +3â€“4. Similar to the hole-doped side, an inward-facing fan from Î½Â =Â +2 develops and meets with the outward-facing fan from Î½Â =Â +1. The density range of the inward-facing fan encompasses the appearance of a superconducting region at Î½Â =Â âˆ’2Â +Â Î´ at this D.
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