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            Abstract
During female germline development, oocytes become a highly specialized cell type and form a maternal cytoplasmic store of crucial factors. Oocyte growth is triggered at the transition from primordial to primary follicle and is accompanied by dynamic changes in gene expression1, but the gene regulatory network that controls oocyte growth remains unknown. Here we identify a set of transcription factors that are sufficient to trigger oocyte growth. By investigation of the changes in gene expression and functional screening using an in vitro mouse oocyte development system, we identified eight transcription factors, each of which was essential for the transition from primordial to primary follicle. Notably, enforced expression of these transcription factors swiftly converted pluripotent stem cells into oocyte-like cells that were competent for fertilization and subsequent cleavage. These transcription-factor-induced oocyte-like cells were formed without specification of primordial germ cells, epigenetic reprogramming or meiosis, and demonstrate that oocyte growth and lineage-specific de novo DNA methylation are separable from the preceding epigenetic reprogramming in primordial germ cells. This study identifies a core set of transcription factors for orchestrating oocyte growth, and provides an alternative source of ooplasm, which is a unique material for reproductive biology and medicine.
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                    Fig. 1: Functional screening of genes involved in the PPT.[image: ]


Fig. 2: Reconstitution of PPT in ES cells.[image: ]


Fig. 3: Dispensability of epigenetic reprogramming for DIOL growth and de novo methylation.[image: ]


Fig. 4: Maturation and developmental potential of DIOLs.[image: ]
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Extended data figures and tables

Extended Data Fig. 1 Transcriptional signatures in PPT.
a, Schematic diagram of the transcriptome analysis. Each stage of the female germ line in vivo (circles) and in vitro (rectangles) was subjected to analysis. The top scale shows days of differentiation. The colour of the points corresponds to that in the PCA plot in Fig. 1a. DOB, day of birth. b, Dynamics of the X/A ratio. The ratio was determined by dividing the transcripts of X chromosomes by the average of the transcripts of autosomes. The putative half-active value (0.5) is shown by a red line. The expression profile is based on at least biologically duplicated samples. c, Expression dynamics of LTR families in oogenesis. The centre of the box plot is the median and the box correspond to the interquartile range (25th and 75th for bottom and top edge of the box, respectively), the distance between the first and third quartiles, the whiskers extend no more than 1.5 times the interquartile range. The expression profile shown is based on biologically triplicated samples. d, The ratio of expression levels of the AT-high-genes/AT-low-genes and GC-high/GC-low genes. Genes expressing any of the stages of the female germ line were classified into groups by the nucleotide compositions of their core promoters (âˆ’100 to âˆ’1 nt). High genes and low genes possessed higher AT or GC numbers compared to the (median +10) values and lower AT or GC numbers compared to the (median âˆ’10) values, respectively. e, Enrichment of the AT-rich sequences around the transcription start sites (TSSs). Shown are the AT ratios at âˆ’100 to +100 bp of the TSSs of genes whose expressions were up- or downregulated more than fourfold between IVD.D11 and IVD.D13. Local enrichment was observed at 20â€“30 bp upstream of the TSSs of these genes (orange box). Note that the TATA-boxes are known to be enriched at âˆ’20 to âˆ’30 bp of the TSS. f, Motif analysis of the sequence around the TSSs. Shown are de novo searched motifs within âˆ’40 bp to 0 bp of the upregulated genes (left) and similar motifs suggested by TOMTOM (right). PÂ values were computed by a two-sided Fisherâ€™s exact test for enrichment of the motif sequences. For the correction of multiple comparisons, P values are multiplied by the number of candidate motifs tested. g, Enrichment of the motifs. Shown are the distributions of each motif shown in f at âˆ’200 to +200 bp of the TSSs of the up- or downregulated genes (left) and the magnified view of the enrichment of TATA-box-like motifs at âˆ’100 bp to +100 bp of the TSSs (right).
Source data


Extended Data Fig. 2 Establishment and functional validation of knockout ES cellÂ lines.
a, Heat map obtained by average linkage hierarchical clustering. The colour names at the right indicate the module assignment determined by WGCNA. Putative PPT-associated modules are written in red. Colour bars on the top of the heatmap indicate the groups in Extended Data Fig. 1a. b, Experimental scheme for the establishment of knockout ES lines. Shown are time course of cell culture for the establishment of knockout ES lines (top), the principal of indel detection by amplicon analysis (IDAA)51 (middle) and a representative IDAA profile of the Tbpl2 locus (bottom). For cell culture procedures, seeÂ Methods. For the amplicon analysis, amplicons derived from alleles with either deletion or insertion were analysed in a fragment analyser. The fragment analyser shows the size of the amplicons in x axis and their frequency in y axis. The sequences of the alleles in ES cells selected by the IDAA profiles were confirmed by Sanger sequencing. c, Summary of oocyte induction from knockout ES lines. The table shows results from the Cas9-mediated knockout lines. The number of ES cell lines tested for the IDAA profile (analysed lines) and knockout lines tested for oocyte induction (mutants) are shown. Among the 27 genes targeted, 19 genes were successfully disrupted. KO alleles of these lines were confirmed by Sanger sequencing. The bottom table shows eight genes (Kat8, Birc5, Sp110, Dynll1, Polr2j, Drap1, Stat3 and Dmap1) for which mutants could not obtained by the Cas9 system. These genes were rescued by the dox (Dox)-inducible expression vector. Shown are the numbers of ES cell lines tested for the IDAA profile (analysed lines), positive for the IDAA profile (candidate lines by PCR), and validated by Sanger sequence (seq-validated lines). Sp110 knockout ES cells could not be established in this study. In these ES cell lines, the gene expression was rescued by addition of Dox until after PGCLC differentiation, and then Dox was removed from the medium at IVD culture, by which 7 out of 8 genes were successfully disrupted in oocytes. Checkmarks indicate successful differentiation into the stage indicated at the top of the table. Pink boxes indicate the stage where differentiation was not observed. d, Oocyte derivation from knockout ES cell lines. The disrupted genes are shown at the left. Results of PGCLCs at 6 days of induction (PGCLCs. D6) and IVD at the days indicated are shown. BF, bright field. Scale bars, 200 Î¼m. nÂ =Â 3, biologically independent experiments. e, Quantification of oocyte formation in knockout lines. Box plots are as in Extended Data Fig. 1c. The oocyte numbers and sizes were measured by Stella-CFP signals. The values were compiled from biologically triplicated experiments.
Source data


Extended Data Fig. 3 Transcriptional properties of knockout oocytes.
a, X/A ratio in knockout oocytes. The ratio was determined as shown in Extended Data Fig. 1b. b, Expression dynamics of LTRs in knockout oocytes. c, Promoter usage of knockout oocytes. Shown are the ratios of expression levels of the AT-high-genes/AT-low-genes and GC-high/GC-low genes. Genes are classified as shown in Extended Data Fig. 1d. Expression profiles shown in aâ€“c are based on biologically duplicated samples. d, Reciprocal gene expression in each line of knockout oocytes. Shown are heat map of the expression of PPT-associated genes in the knockout oocytes. Differences of gene expression in the knockout oocytes at each stage compared to the wild-type are shown. Knockout oocytes arrested before PPT are highlighted in red. e, Imputed transcriptional network of PPT-associated genes from the RNA-seq data of KO-oocytes. Arrows indicate positive regulations. Line widths indicate the strength of the regulations. Arrow colours indicate the source genes of the arrows. Genes associated with the arrest of knockout oocytes before PPT are highlighted in red.


Extended Data Fig. 4 Establishment of BVSCNCh-ES cells.
a, Knock-in of mCherry into the Npm2 locus. As shown in the schematic diagram (left), mCherry was inserted into the ATG of the endogenous Npm2 gene. Primers for genotyping (arrows) and the expected size of the amplicons are shown. The right images show the results of PCR using the primers and samples numbered. M, size marker. For gel source data, see Supplementary Fig. 1. b, mCherry expression in oocytes from BVSCNCh-ES cells. Oocytes were induced by culturing PGCLCs from BVSC H18 ES cells and BVSCNCh-ES cells aggregated with ovarian somatic cells. Note that NPM2-mCherry signals were detected at day 13 in nuclei of oocytes derived from BVSCNCh-ES cells. Scale bar, 100Â Î¼m. nÂ =Â 9, biologically independent experiments. c, High magnification oocytes from BVSCNCh-ES cells. Shown are a merged view of oocytes derived from BVSCNCh-ES cells at 23 days of culture in the aggregate and magnified views of the secondary follicle. Scale bars, 20Â Î¼m (top), and 100Â Î¼m (bottom). nÂ =Â 9, biologically independent experiments.


Extended Data Fig. 5 Requirement of PPT8 for oocyte-like cell induction from ES cells.
a, FACS analysis of BVSCNCh+PPT8 ES cells. Note that over 98% of BVSCNCh+PPT8 ES cells expressed Stella-ECFP at day 5 of Shield1-inducible overexpression of PPT8. nÂ =Â 3, biologically independent experiments. For the gating strategy, see Supplementary Fig. 2. b, Reporter gene expression in BVSCNCh+PPT8 ES cells without Shield1. Scale bars, 100 Î¼m. nÂ =Â 8, biologically independent experiments. c, Overexpression of PPT8 in the ground state. BVSCNCh+PPT8 ES cells were cultured in 2i+LIF with Shield1. Note that Stella-ECFP, but not BLIMP1-mVenus or NPM2-mCherry, was clearly detectable at 1 day of the induction. Scale bars, 100 Î¼m. nÂ =Â 12, biologically independent experiments. d, Change in cell size and nuclear size upon overexpression of PPT8. Both the cell and nuclear sizes of BVSCNCh+PPT8 ES cells were increased at day 5 of the induction. P values were determined by two-sided Studentâ€™s t-test. e, DDX4 expression in BVSCNCh+PPT8 ES cells. At day 5 of the induction, DDX4 expression was detectable in some Stella-ECFP-positive cells. The dashed box in the merged image is enlarged at right. f, Dynamics of size of oocyte-like cells. FACS analysis shows the forward scatter of Stella-ECFP-positive cells (blue) and somatic cells (red) in the aggregates at the days indicated. For the gating strategy, see Supplementary Fig. 2. g, PPT8-dependent follicle formation. Shown are cultures of parental BVSCNCh-ES cells with ovarian somatic cells (top) and BVSCNCh+PPT8 ES cells with ovarian somatic cells without addition of Shield1 (bottom). Results in aâ€“g were reproducible in experiments repeated three times. Scale bars, 200 Î¼m. h, Heat map of maternal gene expression in oocyte-like cells. i, Expression dynamics of LTRs in oocyte-like cells. j, X/A ratio in oocyte-like cells. The ratio was determined as shown in Extended Data Fig. 1b. k, Promoter usage in oocyte-like cells. Shown are the ratios of expression levels of the AT-high-genes/AT-low-genes and GC-high/GC-low genes. Genes are classified as shown in Extended Data Fig. 1d. The sample names in hâ€“k correspond to those in Fig. 2h. Expression profiles shown in hâ€“k are based on biologically duplicated samples.
Source data


Extended Data Fig. 6 Identification of a minimum set of genes for DIOL induction.
a, Subtraction assay for eight transgenes. A total of 49 BVSCNCh-ES cell lines, which randomly lacked transgenes, were subjected to DIOL induction. The number of oocytes and distribution of oocyte size in each cell lines are shown. On the basis of the number of DIOLs induced from the ES cell lines, we found that Dynll1, Sub1 and Sohlh1 were dispensable for DIOL induction (see Mix8-Sub1_3, Mix8_8, Mix8-Dynll1_1, Mix8_3 and Mix8-Sohlh1_3). DIOLs were induced from ES cell lines containing â€˜NFTLSâ€™ (see Mix5_7 and Mix5_2) or â€˜NFTLâ€™ (see Mix5_3), whereas no DIOLs were induced from ES cell lines containing fewer than four transgenes among the lines tested. The values of the DIOL number and size were compiled from biologically triplicated experiments except Mix8-Sohlh1_3 (biologically duplicated experiments). Box plots as in Extended Data Fig. 1c. b, Representative images of NFTLS- and NFTL-induced DIOLs at 21Â days of culture. Scale bars, 200 Î¼m. nÂ =Â 3, biologically independent experiments. c, Knock-in of tdTomato into the Padi6 locus. For further subtraction assay, another reporter ES cells, BVSCâ€˜Ptdâ€™-ES cells, were made by knocking-in tdTomato into the Padi6 gene locus in BVSC ES cells. Primers for genotyping (arrows) and the expected size of the amplicons are shown. The images show the results of PCR using the primers and samples numbered. M, size marker. Cre-mediated loxP excision was made in the clone 3 shown in the left image. For gel source data, see Supplementary Fig. 1. d, The subtraction assay using BVSCPtd-ES cells. Seventeen ES cell lines, which randomly lacked transgenes among NFTLS, were subjected to DIOL induction. The images show expression of Stella-ECFP and PADI6-tdTomato (Ptd) in DIOL.D2 and PADI6-tdTomato in DIOL.D21 plus somatic cells. The set of transgenes is shown below each clone. Stella-ECFP expression was observed all clones containing Figla. Clones, which did not show PADI6-tdTomato expression in DIOLs, were not subjected to reaggregation with somatic cells. Note that no DIOLs were induced from BVSCPtd ES cells that lacked any of the NFTL genes. Scale bars, 100 Î¼m (DIOL.D2) and 200 Î¼m (DIOL+S.D21). nÂ =Â 3, biologically independent experiments. e, Variation of DIOL induction among the transgenic BVSCNCh clones. All three of the BVSCNCh-ES cells harbouring the 8 factors showed a robust induction of DIOLs, whereas 2 of 6 NFTLS clones and 1 of 2 NFTL clones showed the DIOL induction.
Source data


Extended Data Fig. 7 DIOL induction from somatic cells.
a, A schematic protocol of DIOL induction from MEFs. BVSCNCh PPT8-ES cells (Mix8_6, see Extended Data Fig. 6a) were injected into blastocysts, followed by transplantation into pseudopregnant females. At 11 days after transplantation, MEFs were collected from female chimaera embryos, which had Stella-ECFP-positive PGCs or oocytes as shown in the images. BVSCNCh MEFs were selected by puromycin and cultured with Shield1 and gonadal somatic cells. b, No DIOL formation from MEFs. Images show MEFs and reaggregates at the indicated days of culture. Experiments were performed five times. Scale bars, 100Â Î¼m (MEFs) and 200Â Î¼m (reaggregates). c, A schematic protocol of DIOL induction from iPS cells. BVSC iPS cells were derived from the tail of a 10-week-old female BVSC mouse by overexpression of Pou5f1, Sox2, Klf4 and Myc. Expression vectors for DD-tagged NOBOX, FIGLA, TBPL2 and STAT3 were transfected into BVSC iPS cells. BVSC iPS cells containing all the expression vectors were cultured with Shield1 and gonadal somatic cells. d, DIOL induction from BVSC iPS cells. Images show reaggregates on day 21 of culture. The results were reproducible in experiments repeated three times. Scale bars, 200Â Î¼m.


Extended Data Fig. 8 Dispensability of PGC specification for DIOL formation.
a, Heat map of genes essential for PGC specification. The expression profile is based on at least biologically duplicated samples. b, Deletion of the Prdm1 gene by Cas9. gRNAs for the deletion of exons of the Prdm1 gene and primers for detection of the deletions are shown. The numbers above the primer indicate locations in the genome. The right image shows PCR results using the primers. The numbers and M indicate the ES cell lines analysed and the size marker, respectively. Red dots indicate Prdm1-knockout ES lines. For gel source data, see Supplementary Fig. 1. c, DIOL induction with somatic cells from Prdm1-knockout ES cells. Note that Stella-ECFP- and NCh-positive oocytes were induced in the absence of Prdm1. Scale bars, 200 Î¼m. nÂ =Â 6, biologically independent experiments.


Extended Data Fig. 9 Dispensability of epigenetic reprogramming for DIOL formation and de novo methylation in full-grown DIOLs.
a, Level of DNA methylation in the genome of DIOLs. Shown are the mean percentages with s.d. of methylated CpG, CHG and CHH (in which H correspond to A, T or C) in the genomes of ES cells and DIOL.D5 in the biologically duplicated samples. b, A violin plot showing the CpG methylation levels for each 10-kb window. c, Violin plots showing the distribution of CpG methylation in repetitive elements classified by repeat masker (http://www.repeatmasker.org). DNA, DNA repeat elements; LINE, long interspersed nuclear elements; RC, rolling circle; RNA, RNA repeats including RNA, tRNA, rRNA, small nuclear RNA (snRNA), small conditional RNA (scRNA) and signal recognition particle (srpRNA); SINE, short interspersed nuclear elements; simple repeats, microsatellites. d, Formation of transzonal projections between the DIOL and surrounding granulosa cells. Images show a representative DIOL at 9 days of IVG culture stained with anti-GFP antibody for Stella-ECFP (green), FOXL2 (red), phalloidin (white) and DAPI (blue). The box in the merged image is shown at the right image. Note that transzonal projections stained with phalloidin bridge between the DIOL and surrounding granulosa cells (arrowheads). Formation of transzonal projections was observed in all 12 of the DIOL-granulosa cell complexes tested. Scale bar, 10 Î¼m. nÂ =Â 10, biologically independent DIOLâ€“granulosa cell complexes. e, DNA methylation patterns across chromosome 15 estimated by a locally estimated scatterplot smoothing regression fitting. Red and blue lines indicate the mean DNA methylation levels of ES cells or DIOLs and in vivo oocytes, respectively. The shaded areas indicate the 95% confidence intervals. f, The frequency of reads with a different level of CpG methylation in imprinting loci. The yÂ axis shows the frequency of reads at the maternal imprinting loci indicated. The xÂ axis shows the percentage of CpG methylation in each read. Note that the frequency of completely methylated reads was more than 50 in all loci, suggesting that a portion of the MII-DIOLs completed the maternal imprinting. The methylome profile is based on biologically duplicated samples, except in the case of ngOocytes and fgOocytes, for which single samples were used.
Source data


Extended Data Fig. 10 Lack of meiosis in DIOLs.
a, Chromosome structure in DIOLs. Shown are representative images of the immunofluorescence analysis of centrosomes and H3K9me3 in a DIOL and an oocyte in vivo soon after germinal vesicle breakdown. Bivalent structures of the chromosomes were observed in the oocyte in vivo (nÂ =Â 6) but not in the DIOL (nÂ =Â 20). Scale bar, 10Â Î¼m. b, Heat map of genes essential for meiosis. The expression profile is based on biologically duplicated samples. c, SYCP3 expression in DIOLs. A synaptonemal structure was seen in IVD.D7 but not at DIOL+S.D5 irrespective of the presence of retinoic acid (RA) (1Â Î¼M). Scale bar, 10 Î¼m. A similar result was observed in three independent reconstituted ovaries. Scale bar, 10Â Î¼m. d, Percentage of DIOLs with a polar body. Shown are the number of fgDIOLs and MII-DIOLs in each experiment. e, Heat map of gene expression representing oocyte maturation.
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Reporting Summary

Video 1
: Live imaging analysis of chromosomal segregation in fgDIOL maturation. Microtubules and chromosomes were visualized by expression of EGFP-Map4 (green) and H2B-mCherry (magenta), respectively, in WT fg oocytes and fgDIOLs. SC and Npm2-mCherry expression are detected in the cytoplasm of DIOLs. Shown are combined time-laps movies that were acquired at 5-min intervals for 14 h after induction of meiotic resumption.





Source data
Source Data Fig. 1

Source Data Fig. 3

Source Data Extended Data Fig. 1

Source Data Extended Data Fig. 2

Source Data Extended Data Fig. 5

Source Data Extended Data Fig. 6

Source Data Extended Data Fig. 9




Rights and permissions
Reprints and permissions


About this article
[image: Check for updates. Verify currency and authenticity via CrossMark]       



Cite this article
Hamazaki, N., Kyogoku, H., Araki, H. et al. Reconstitution of the oocyte transcriptional network with transcription factors.
                    Nature 589, 264â€“269 (2021). https://doi.org/10.1038/s41586-020-3027-9
Download citation
	Received: 07 January 2020

	Accepted: 28 October 2020

	Published: 16 December 2020

	Issue Date: 14 January 2021

	DOI: https://doi.org/10.1038/s41586-020-3027-9


Share this article
Anyone you share the following link with will be able to read this content:
Get shareable linkSorry, a shareable link is not currently available for this article.


Copy to clipboard

                            Provided by the Springer Nature SharedIt content-sharing initiative
                        








            


            
        
            
                This article is cited by

                
                    	
                            
                                
                                    
                                        Modelling in vitro gametogenesis using induced pluripotent stem cells: a review
                                    
                                

                            
                                
                                    	Maria Victoria Romualdez-Tan


                                
                                Cell Regeneration (2023)

                            
	
                            
                                
                                    
                                        STRA8â€“RB interaction is required for timely entry of meiosis in mouse female germ cells
                                    
                                

                            
                                
                                    	Ryuki Shimada
	Yuzuru Kato
	Kei-ichiro Ishiguro


                                
                                Nature Communications (2023)

                            
	
                            
                                
                                    
                                        Intellectual property and assisted reproductive technology
                                    
                                

                            
                                
                                    	David Cyranoski
	Jorge L. Contreras
	Victoria T. Carrington


                                
                                Nature Biotechnology (2023)

                            
	
                            
                                
                                    
                                        The mice with two dads: scientists create eggs from male cells
                                    
                                

                            
                                
                                    	Heidi Ledford
	Max Kozlov


                                
                                Nature (2023)

                            
	
                            
                                
                                    
                                        Compound heterozygous mutations in TBPL2 were identified in an infertile woman with impaired ovarian folliculogenesis
                                    
                                

                            
                                
                                    	Tian Du
	Meiling Li
	Bing Yao


                                
                                Journal of Assisted Reproduction and Genetics (2023)

                            


                

            

        
    

            
                Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.



                
                    
                    

                

            
        





    
        

        
            
                

    
        
            
                
                Access through your institution
            
        

        
            
                
                    Buy or subscribe
                
            

        
    



            

            
                

    
        
        

        
        
            
                
                Access through your institution
            
        

        
            
                Change institution
            
        

        
        
            
                Buy or subscribe
            
        

        
    



            

        
    


    
        
    

    
    
        
            
                Associated content

                
                    
                    
                        
                            
    
        
            
                
                    Challenges to making an egg
                

                
	Richard M. Schultz
	John J. Eppig



                
    
        
            Nature Cell Biology
        
        News & Views
        
        
            08 Jan 2021
        
    


            

        

    


                        

                    
                
            
        

        
    

    

    
        
            
                
                    
                        
                            Advertisement

                            
    
        
            
                [image: Advertisement]
        

    


                        

                    

                

            

            

            

        

    






    
        
            
                Explore content

                	
                                
                                    Research articles
                                
                            
	
                                
                                    News
                                
                            
	
                                
                                    Opinion
                                
                            
	
                                
                                    Research Analysis
                                
                            
	
                                
                                    Careers
                                
                            
	
                                
                                    Books & Culture
                                
                            
	
                                
                                    Podcasts
                                
                            
	
                                
                                    Videos
                                
                            
	
                                
                                    Current issue
                                
                            
	
                                
                                    Browse issues
                                
                            
	
                                
                                    Collections
                                
                            
	
                                
                                    Subjects
                                
                            


                	
                            Follow us on Facebook
                            
                        
	
                            Follow us on Twitter
                            
                        
	
                            
                                Subscribe
                            
                        
	
                            Sign up for alerts
                            
                        
	
                            
                                RSS feed
                            
                        


            

        
    
    
        
            
                
                    About the journal

                    	
                                
                                    Journal Staff
                                
                            
	
                                
                                    About the Editors
                                
                            
	
                                
                                    Journal Information
                                
                            
	
                                
                                    Our publishing models
                                
                            
	
                                
                                    Editorial Values Statement
                                
                            
	
                                
                                    Journal Metrics
                                
                            
	
                                
                                    Awards
                                
                            
	
                                
                                    Contact
                                
                            
	
                                
                                    Editorial policies
                                
                            
	
                                
                                    History of Nature
                                
                            
	
                                
                                    Send a news tip
                                
                            


                

            
        

        
            
                
                    Publish with us

                    	
                                
                                    For Authors
                                
                            
	
                                
                                    For Referees
                                
                            
	
                                
                                    Language editing services
                                
                            
	
                                Submit manuscript
                                
                            


                

            
        
    



    
        Search

        
            Search articles by subject, keyword or author
            
                
                    
                

                
                    
                        Show results from
                        All journals
This journal


                    

                    
                        Search
                    

                


            

        


        
            
                Advanced search
            
        


        Quick links

        	Explore articles by subject
	Find a job
	Guide to authors
	Editorial policies


    





        
    
        
            

            
                
                    Nature (Nature)
                
                
    
    
        ISSN 1476-4687 (online)
    
    


                
    
    
        ISSN 0028-0836 (print)
    
    

            

        

    




    
        
    nature.com sitemap

    
        
            
                About Nature Portfolio

                	About us
	Press releases
	Press office
	Contact us


            


            
                Discover content

                	Journals A-Z
	Articles by subject
	Protocol Exchange
	Nature Index


            


            
                Publishing policies

                	Nature portfolio policies
	Open access


            


            
                Author & Researcher services

                	Reprints & permissions
	Research data
	Language editing
	Scientific editing
	Nature Masterclasses
	Research Solutions


            


            
                Libraries & institutions

                	Librarian service & tools
	Librarian portal
	Open research
	Recommend to library


            


            
                Advertising & partnerships

                	Advertising
	Partnerships & Services
	Media kits
                    
	Branded
                        content


            


            
                Professional development

                	Nature Careers
	Nature 
                        Conferences


            


            
                Regional websites

                	Nature Africa
	Nature China
	Nature India
	Nature Italy
	Nature Japan
	Nature Korea
	Nature Middle East


            


        

    

    
        	Privacy
                Policy
	Use
                of cookies
	
                Your privacy choices/Manage cookies
                
            
	Legal
                notice
	Accessibility
                statement
	Terms & Conditions
	Your US state privacy rights


    





        
    
        [image: Springer Nature]
    
    © 2024 Springer Nature Limited




    

    
    
    







    

    



    
    

        

    
        
            


Close
    



        

            
                
                    [image: Nature Briefing]
                    Sign up for the Nature Briefing newsletter â€” what matters in science, free to your inbox daily.

                

                
                    
                        
                        

                        
                        
                        
                        

                        Email address

                        
                            
                            
                            
                            Sign up
                        


                        
                            
                            I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.
                        

                    

                

            


        


    

    
    

        

    
        
            

Close
    



        
            Get the most important science stories of the day, free in your inbox.
            Sign up for Nature Briefing
            
        


    









    [image: ]







[image: ]
