This is an unedited manuscript that has been accepted for publication. Nature Research are providing this early version of the manuscript as a service to our authors and readers. The manuscript will undergo copyediting, typesetting and a proof review before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.

Mobility network models of COVID-19 explain inequities and inform reopening

Abstract

The COVID-19 pandemic dramatically changed human mobility patterns, necessitating epidemiological models which capture the effects of changes in mobility on virus spread1. We introduce a metapopulation SEIR model that integrates fine-grained, dynamic mobility networks to simulate the spread of SARS-CoV-2 in 10 of the largest US metropolitan statistical areas. Derived from cell phone data, our mobility networks map the hourly movements of 98 million people from neighborhoods (census block groups, or CBGs) to points of interest (POIs) such as restaurants and religious establishments, connecting 57k CBGs to 553k POIs with 5.4 billion hourly edges. We show that by integrating these networks, a relatively simple SEIR model can accurately fit the real case trajectory, despite substantial changes in population behavior over time. Our model predicts that a small minority of “superspreader” POIs account for a large majority of infections and that restricting maximum occupancy at each POI is more effective than uniformly reducing mobility. Our model also correctly predicts higher infection rates among disadvantaged racial and socioeconomic groups2–8 solely from differences in mobility: we find that disadvantaged groups have not been able to reduce mobility as sharply, and that the POIs they visit are more crowded and therefore higher-risk. By capturing who is infected at which locations, our model supports detailed analyses that can inform more effective and equitable policy responses to COVID-19.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jure Leskovec.

Supplementary information

Supplementary Information

The Supplementary Information contains four sections: Supplementary Methods, Supplementary Discussion, Supplementary Tables, and Supplementary Figures. The Supplementary Methods section describes (1) our comparison of SafeGraph mobility data to Google mobility data, where we find high correlation; (2) sensitivity analyses of the model (e.g., modifying CBG and POI transmission rates, fitting to deaths instead of cases) and tests of model identifiability, (3) a detailed description of how we estimated dynamic mobility networks from raw SafeGraph data using iterative proportional fitting. The Supplementary Discussion section covers (1) further discussion of the racial and socioeconomic disparities predicted by our model; (2) limitations of the model and mobility dataset. There are 6 Supplementary Tables, which provide more details about the SafeGraph data, the comparison to Google mobility data, and additional model results. There are 24 Supplementary Figures, which include additional results about predicted disparities, results from all sensitivity analyses and identifiability checks, and POI attributes and predicted reopening risks for every POI category and metro area.

Reporting Summary

Peer Review File

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chang, S., Pierson, E., Koh, P.W. et al. Mobility network models of COVID-19 explain inequities and inform reopening. Nature (2020). https://doi.org/10.1038/s41586-020-2923-3

Download citation

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing