Environmental drivers of megafauna and hominin extinction in Southeast Asia

Abstract

Southeast Asia has emerged as an important region for understanding hominin and mammalian migrations and extinctions. High-profile discoveries have shown that Southeast Asia has been home to at least five members of the genus Homo1,2,3. Considerable turnover in Pleistocene megafauna has previously been linked with these hominins or with climate change4, although the region is often left out of discussions of megafauna extinctions. In the traditional hominin evolutionary core of Africa, attempts to establish the environmental context of hominin evolution and its association with faunal changes have long been informed by stable isotope methodologies5,6. However, such studies have largely been neglected in Southeast Asia. Here we present a large-scale dataset of stable isotope data for Southeast Asian mammals that spans the Quaternary period. Our results demonstrate that the forests of the Early Pleistocene had given way to savannahs by the Middle Pleistocene, which led to the spread of grazers and extinction of browsers—although geochronological limitations mean that not all samples can be resolved to glacial or interglacial periods. Savannahs retreated by the Late Pleistocene and had completely disappeared by the Holocene epoch, when they were replaced by highly stratified closed-canopy rainforest. This resulted in the ascendency of rainforest-adapted species as well as Homo sapiens—which has a unique adaptive plasticity among hominins—at the expense of savannah and woodland specialists, including Homo erectus. At present, megafauna are restricted to rainforests and are severely threatened by anthropogenic deforestation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Map of the Indochinese and Sundaic subregions.
Fig. 2: Distribution of δ13C values across geological subepochs and epochs.

Data availability

All accession numbers, and data generated and used during this study, are included in the Article and its Supplementary Information.

References

  1. 1.

    Détroit, F. et al. A new species of Homo from the Late Pleistocene of the Philippines. Nature 568, 181–186 (2019).

    ADS  Google Scholar 

  2. 2.

    Kaifu, Y. Archaic hominin populations in Asia before the arrival of modern humans: their phylogeny and implications for the “Southern Denisovans”. Curr. Anthropol. 58, S418–S433 (2017).

    Google Scholar 

  3. 3.

    Reich, D. et al. Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania. Am. J. Hum. Genet. 89, 516–528 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Louys, J., Curnoe, D. & Tong, H. Characteristics of Pleistocene megafauna extinctions in Southeast Asia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 243, 152–173 (2007).

    Google Scholar 

  5. 5.

    Klein, R. G. Stable carbon isotopes and human evolution. Proc. Natl Acad. Sci. USA 110, 10470–10472 (2013).

    ADS  CAS  Google Scholar 

  6. 6.

    Cerling, T. E. et al. Woody cover and hominin environments in the past 6 million years. Nature 476, 51–56 (2011).

    ADS  CAS  Google Scholar 

  7. 7.

    Heaney, L. R. in Tropical Forests and Climate (ed. Myers, N.) 53–61 (Springer, 1991).

  8. 8.

    Bird, M. I., Taylor, D. & Hunt, C. Palaeoenvironments of insular Southeast Asia during the Last Glacial Period: a savanna corridor in Sundaland? Quat. Sci. Rev. 24, 2228–2242 (2005).

    ADS  Google Scholar 

  9. 9.

    Louys, J. & Turner, A. Environment, preferred habitats and potential refugia for Pleistocene Homo in Southeast Asia. C. R. Palevol 11, 203–211 (2012).

    Google Scholar 

  10. 10.

    Dennell, R. & Roebroeks, W. An Asian perspective on early human dispersal from Africa. Nature 438, 1099–1104 (2005).

    ADS  CAS  Google Scholar 

  11. 11.

    van den Bergh, G. D., de Vos, J. & Sondaar, P. Y. The Late Quaternary palaeogeography of mammal evolution in the Indonesian Archipelago. Palaeogeogr. Palaeoclimatol. Palaeoecol. 171, 385–408 (2001).

    Google Scholar 

  12. 12.

    Steiper, M. E. Population history, biogeography, and taxonomy of orangutans (Genus: Pongo) based on a population genetic meta-analysis of multiple loci. J. Hum. Evol. 50, 509–522 (2006).

    Google Scholar 

  13. 13.

    Patel, R. P. et al. Two species of Southeast Asian cats in the genus Catopuma with diverging histories: an island endemic forest specialist and a widespread habitat generalist. R. Soc. Open Sci. 3, 160350 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Cannon, C. H., Morley, R. J. & Bush, A. B. G. The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and highly vulnerable to disturbance. Proc. Natl Acad. Sci. USA 106, 11188–11193 (2009).

    ADS  CAS  Google Scholar 

  15. 15.

    Sun, X., Li, X., Luo, Y. & Chen, X. The vegetation and climate at the last glaciation on the emerged continental shelf of the South China Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 160, 301–316 (2000).

    Google Scholar 

  16. 16.

    Louys, J. & Meijaard, E. Palaeoecology of Southeast Asian megafauna-bearing sites from the Pleistocene and a review of environmental changes in the region. J. Biogeogr. 37, 1432–1449 (2010).

    Google Scholar 

  17. 17.

    Raes, N. et al. Historical distribution of Sundaland’s dipterocarp rainforests at Quaternary glacial maxima. Proc. Natl Acad. Sci. USA 111, 16790–16795 (2014).

    ADS  CAS  Google Scholar 

  18. 18.

    Handiani, D. et al. Tropical vegetation response to Heinrich Event 1 as simulated with the UVic ESCM and CCSM3. Clim. Past Discuss. 8, 5359–5387 (2012).

    ADS  Google Scholar 

  19. 19.

    Chabangborn, A., Brandefelt, J. & Wohlfarth, B. Asian monsoon climate during the Last Glacial Maximum: palaeo-data–model comparisons: LGM Asian monsoon climate. Boreas 43, 220–242 (2014).

    Google Scholar 

  20. 20.

    Levin, N. E. et al. Herbivore enamel carbon isotopic composition and the environmental context of Ardipithecus at Gona, Ethiopia. Geol. S. Am. S. 446, 215–235 (2008).

    Google Scholar 

  21. 21.

    Cerling, T. E., Hart, J. A. & Hart, T. B. Stable isotope ecology in the Ituri Forest. Oecologia 138, 5–12 (2004).

    ADS  Google Scholar 

  22. 22.

    Secord, R., Wing, S. L. & Chew, A. Stable isotopes in early Eocene mammals as indicators of forest canopy structure and resource partitioning. Paleobiology 34, 282–300 (2008).

    Google Scholar 

  23. 23.

    Fannin, L. D. & McGraw, W. S. Does oxygen stable isotope composition in primates vary as a function of vertical stratification or folivorous behaviour? Folia Primatol. 91, 219–227 (2020).

    Google Scholar 

  24. 24.

    Clark, P. U. et al. The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quat. Sci. Rev. 25, 3150–3184 (2006).

    ADS  Google Scholar 

  25. 25.

    Sarr, A. C. et al. Subsiding Sundaland. Geology 47, 119–122 (2019).

    ADS  Google Scholar 

  26. 26.

    Di Nezio, P. N. et al. The climate response of the Indo-Pacific warm pool to glacial sea level. Paleoceanogr 31, 866–894 (2016).

    ADS  Google Scholar 

  27. 27.

    Roberts, P. et al. Isotopic evidence for initial coastal colonization and subsequent diversification in the human occupation of Wallacea. Nat. Commun. 11, 2068 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Barker, G. & Farr, L. E. Archaeological Investigations in the Niah Caves, Sarawak, The Archaeology of Niah Caves, Sarawak (McDonald Institute Monographs, 2016).

  29. 29.

    Piper, P. J. & Rabett, R. J. Hunting in a tropical rainforest: evidence from the Terminal Pleistocene at Lobang Hangus, Niah Caves, Sarawak. Int. J. Osteoarchaeol. 19, 551–565 (2009).

    Google Scholar 

  30. 30.

    Steiner, C. C., Houck, M. L. & Ryder, O. A. Genetic variation of complete mitochondrial genome sequences of the Sumatran rhinoceros (Dicerorhinus sumatrensis). Conserv. Genet. 19, 397–408 (2018).

    CAS  Google Scholar 

  31. 31.

    Sodhi, N. S., Koh, L. P., Brook, B. W. & Ng, P. K. Southeast Asian biodiversity: an impending disaster. Trends Ecol. Evol. 19, 654–660 (2004).

    Google Scholar 

  32. 32.

    Spehar, S. N. et al. Orangutans venture out of the rainforest and into the Anthropocene. Sci. Adv. 4, e1701422 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Craig, H. The geochemistry of the stable carbon isotope. Geochim. Cosmochim. Acta 3, 53–92 (1953).

    ADS  CAS  Google Scholar 

  34. 34.

    Smith, B. N. & Epstein, S. Two categories of 13C/12C ratios for higher plants. Plant Physiol. 47, 380–384 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Tieszen, L. L. Natural variations in the carbon isotope values of plants: implications for archaeology, ecology, and paleoecology. J. Archaeol. Sci. 18, 227–248 (1991).

    Google Scholar 

  36. 36.

    Sponheimer, M. et al. Do “savanna” chimpanzees consume C4 resources? J. Hum. Evol. 51, 128–133 (2006).

    CAS  Google Scholar 

  37. 37.

    Sponheimer, M. et al. Isotopic evidence of early hominin diets. Proc. Natl Acad. Sci. USA 110, 10513–10518 (2013).

    ADS  CAS  Google Scholar 

  38. 38.

    Codron, J. et al. Stable isotope series from elephant ivory reveal lifetime histories of a true dietary generalist. Proc. R. Soc. Lond. B 279, 2433–2441 (2012).

    Google Scholar 

  39. 39.

    Crowley, B. E. et al. Extinction and ecology retreat in a community of primates. Proc. R. Soc. Lond. B 279, 3597–3605 (2012).

    Google Scholar 

  40. 40.

    Farquhar, G. D., Ehleringer, J. R. & Hubick, K. T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 503–537 (1989).

    CAS  Google Scholar 

  41. 41.

    van der Merwe, N. J. & Medina, E. The canopy effect, carbon isotope ratios and foodwebs in Amazonia. J. Archaeol. Sci. 18, 249–259 (1991).

    Google Scholar 

  42. 42.

    Pearcy, R. W. & Pfitsch, W. A. Influence of sunflecks on the δ13C of Adenocaulon bicolor plants occurring in contrasting forest understory microsites. Oecologia 86, 457–462 (1991).

    ADS  Google Scholar 

  43. 43.

    Bonafini, M., Pellegrini, M., Ditchfield, P. & Pollard A. M. Investigation of the ‘canopy effect’ in the isotope ecology of temperate woodlands. J. Archaeol. Sci. 40, 3926–3935 (2013).

    Google Scholar 

  44. 44.

    Ehleringer, J. R., Rundel, P. W. & Nagy, K. A. Stable isotopes in physiological ecology and food web research. Trends Ecol. Evol. 1, 42–45 (1986).

    CAS  Google Scholar 

  45. 45.

    van der Merwe, N. J. & Medina, E. Photosynthesis and 13C/12C ratios in Amazonian rainforests. Geochim. Cosmochim. Acta 53, 1091–1094 (1989).

    ADS  Google Scholar 

  46. 46.

    Ometto, J. P. H. B. et al. The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil. Biogeochemistry 79, 251–274 (2006).

    CAS  Google Scholar 

  47. 47.

    Gonfiantini, R., Gratziu, S. & Tongiorgi, E. in Isotopes and Radiation in Soil Plant Nutrition Studies (Technical Report Series No. 206) (ed. Joint FAO/IAEA Division of Atomic Energy in Agriculture) 405–410 (Isotope Atomic Energy Commission, 1965).

  48. 48.

    Flanagan, L. B., Comstock, J. P. & Ehleringer, J. R. Comparison of modelled and observed environmental influences on the stable oxygen and hydrogen isotope composition of leaf water in Phaseolus vulgaris L. Plant Physiol. 96, 588–596 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Yakir, D., Berry, J. A., Giles, L. & Osmond, C. B. Isotopic heterogeneity of water in transpiring leaves: Identification of the component that controls the δ18O of atmospheric O2 and CO2. Plant Cell Environ. 17, 73–80 (1994).

    CAS  Google Scholar 

  50. 50.

    Sheshshayee, M. S. et al. Oxygen isotope enrichment (Δ18O) as a measure of time-averaged transpiration rate. J. Exp. Bot. 56, 3033–3039 (2005).

    CAS  Google Scholar 

  51. 51.

    Buchmann, N. & Ehleringer, J. R. CO2 concentration profiles, and carbon and oxygen isotopes in C3 and C4 crop canopies. Agric. For. Meteorol. 89, 45–58 (1998).

    ADS  Google Scholar 

  52. 52.

    Buchmann, N., Guehl, J. M., Barigah, T. S. & Ehleringer, J. R. Interseasonal comparison of CO2 concentrations, isotopic composition, and carbon dynamics in an Amazonian rainforest (French Guiana). Oecologia 110, 120–131 (1997).

    ADS  CAS  Google Scholar 

  53. 53.

    da Silveira, L., Sternberg, L., Mulkey, S. S. & Joseph Wright, S. Oxygen isotope ratio stratification in a tropical moist forest. Oecologia 81, 51–56 (1989).

    ADS  Google Scholar 

  54. 54.

    McCarroll, D. & Loader, N. J. in Isotopes in Palaeonvironmental Research (ed. Leng, M. J.) 67–116 (Springer, 2006).

  55. 55.

    Carter, M. L. & Bradbury, M. W. Oxygen isotope ratios in primate bone carbonate reflect amount of leaves and vertical stratification in the diet. Am. J. Primatol. 78, 1086–1097 (2016).

    CAS  Google Scholar 

  56. 56.

    Kohn, M. J., Schoeninger, M. J. & Valley, J. W. Herbivore tooth oxygen isotope compositions: effects of diet and physiology. Geochim. Cosmochim. Acta 60, 3889–3896 (1996).

    ADS  CAS  Google Scholar 

  57. 57.

    Levin, N. E., Cerling, T. E., Passey, B. H., Harris, J. M. & Ehleringer, J. R. A stable isotope aridity index for terrestrial environments. Proc. Natl Acad. Sci. USA 103, 11201–11205 (2006).

    ADS  CAS  Google Scholar 

  58. 58.

    Lee-Thorp, J. et al. Isotopic evidence for an early shift to C4 resources by Pliocene hominins in Chad. Proc. Natl Acad. Sci. USA 109, 20369–20372 (2012).

    ADS  CAS  Google Scholar 

  59. 59.

    Roberts, P. et al. Fruits of the forest: Human stable isotope ecology and rainforest adaptations in Late Pleistocene and Holocene (<36 to 3 ka) Sri Lanka. J. Hum. Evol. 106, 102–118 (2017).

    Google Scholar 

  60. 60.

    Snoeck, C. & Pellegrini, M. Comparing bioapatite carbonate pre-treatments for isotopic measurements: part 1 – impact on structure and chemical composition. Chem. Geol. 417, 394–403 (2015).

    ADS  CAS  Google Scholar 

  61. 61.

    Pellegrini, M. & Snoeck, C. Comparing bioapatite carbonate pre-treatments for isotopic measurements: part 2 – impact on carbon and oxygen isotope compositions. Chem. Geol. 420, 88–96 (2016).

    ADS  CAS  Google Scholar 

  62. 62.

    Jiang, Q. Y., Zhao, L. X. & Hu, Y. W. Variations of fossil enamel bioapatite caused by different preparation and measurement protocols: a case study of Gigantopithecus fauna. Vertebrata PalAsiatica 58, 159–168 (2020).

    Google Scholar 

  63. 63.

    Pushkina, D., Bocherens, H., Chaimanee, Y. & Jaeger, J. J. Stable carbon isotope reconstructions of diet and paleoenvironment from the late Middle Pleistocene Snake Cave in Northeastern Thailand. Naturwissenschaften 97, 299–309 (2010).

    ADS  CAS  Google Scholar 

  64. 64.

    Ma, J. et al. Isotopic evidence of foraging ecology of Asian elephant (Elephas maximus) in South China during the Late Pleistocene. Quat. Int. 443, 160–167 (2017).

    Google Scholar 

  65. 65.

    Ma, J. et al. Ecological flexibility and differential survival of Pleistocene Stegodon orientalis and Elephas maximus in mainland southeast Asia revealed by stable isotope (C, O) analysis. Quat. Sci. Rev. 212, 33–44 (2019).

    ADS  Google Scholar 

  66. 66.

    Bacon, A. M. et al. Nam Lot (MIS 5) and Duoi U’Oi (MIS 4) Southeast Asian sites revisited: zooarchaeological and isotopic evidences. Palaeogeogr. Palaeoclimatol. Palaeoecol. 512, 132–144 (2018).

    Google Scholar 

  67. 67.

    Bacon, A. M. et al. Testing the savannah corridor hypothesis during MIS2: the Boh Dambang hyena site in southern Cambodia. Quat. Int. 464, 417–439 (2018).

    Google Scholar 

  68. 68.

    Suraprasit, K. et al. Late Middle Pleistocene ecology and climate in northeastern Thailand inferred from the stable isotope analysis of Khok Sung herbivore tooth enamel and the land mammal cenogram. Quat. Sci. Rev. 193, 24–42 (2018).

    ADS  Google Scholar 

  69. 69.

    Suraprasit, K. et al. New fossil and isotope evidence for the Pleistocene zoogeographic transition and hypothesized savanna corridor in peninsular Thailand. Quat. Sci. Rev. 221, 105861 (2019).

    Google Scholar 

  70. 70.

    Bocherens, H. et al. Flexibility of diet and habitat in Pleistocene South Asian mammals: implications for the fate of the giant fossil ape Gigantopithecus. Quat. Int. 434, 148–155 (2017).

    Google Scholar 

  71. 71.

    Puspaningrum, M. R. et al. Isotopic reconstruction of proboscidean habitats and diets on Java since the Early Pleistocene: implications for adaptation and extinction. Quat. Sci. Rev. 228, 106007 (2020).

    Google Scholar 

  72. 72.

    Janssen, R. et al. Tooth enamel stable isotopes of Holocene and Pleistocene fossil fauna reveal glacial and interglacial paleoenvironments of hominins in Indonesia. Quatern. Sci. Rev. (Singap.) 144, 145–154 (2016).

    ADS  Google Scholar 

  73. 73.

    Wang, W. et al. Sequence of mammalian fossils, including hominoid teeth, from the Bubing Basin caves, South China. J. Hum. Evol. 52, 370–379 (2007).

    Google Scholar 

  74. 74.

    Nelson, S. V. The paleoecology of early Pleistocene Gigantopithecus blacki inferred from isotopic analyses. Am. J. Phys. Anthropol. 155, 571–578 (2014).

    Google Scholar 

  75. 75.

    Qu, Y. et al. Preservation assessments and carbon and oxygen isotopes analysis of tooth enamel of Gigantopithecus blacki and contemporary animals from Sahne Cave, Chongzuo, South China during the Early Pleistocene. Quat. Int. 354, 52–58 (2014).

    Google Scholar 

  76. 76.

    Uno, K. T. et al. Late Miocene to Pliocene carbon isotope record of differential diet change among East African herbivores. Proc. Natl Acad. Sci. USA 108, 6509–6514 (2011).

    ADS  CAS  Google Scholar 

  77. 77.

    LeGeros, R. Z. Calcium Phosphates in Oral Biology and Medicine (Monographs in Oral Science 15) (1991).

  78. 78.

    Lee-Thorp, J. A. On isotopes and old bones. Archaeometry 50, 925–950 (2008).

    Google Scholar 

  79. 79.

    Friedli, H. et al. Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature 324, 237–238 (1986).

    ADS  CAS  Google Scholar 

  80. 80.

    Graven, H. et al. Compiled records of carbon isotopes in atmospheric CO2 for historical simulations in CMIP6. Geosci. Model Dev. 10, 4405–4417 (2017).

    ADS  CAS  Google Scholar 

  81. 81.

    Ambrose, S. H. & Norr, L. in Prehistoric Human Bone 1–37 (Springer, Berlin, Heidelberg, 1993).

  82. 82.

    Cerling, T. E. & Harris, J. M. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120, 347–363 (1999).

    ADS  Google Scholar 

  83. 83.

    Crowley, B. E. et al. Stable carbon and nitrogen isotope enrichment in primate tissues. Oecologia 164, 611–626 (2010).

    ADS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Lee-Thorp, J. A., Sealy, J. C. & van der Merwe, N. J. Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet. J. Archaeol. Sci. 16, 585–599 (1989).

    Google Scholar 

  85. 85.

    Kellner, C. M. & Schoeninger, M. J. A simple carbon isotope model for reconstructing prehistoric human diet. Am. J. Phys. Anthropol. 133, 1112–1127 (2007).

    Google Scholar 

  86. 86.

    Karasov, W. H. & Douglas, A. E. Comparative digestive physiology. Compr. Physiol. 3, 741–783 (2013).

    PubMed  PubMed Central  Google Scholar 

  87. 87.

    Ley, R. E. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Furness, J. B., Cottrell, J. J. & Bravo, D. M. Comparative gut physiology symposium: comparative physiology of digestion. J. Anim. Sci. 93, 485–491 (2015).

    CAS  Google Scholar 

  89. 89.

    Hammer, Ø., Harper, D. A. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electronica 4, 9 (2001).

    Google Scholar 

  90. 90.

    Cleveland, W. S. Robust locally weighted fitting and smoothing scatterplots. J. Am. Stat. Assoc. 74, 829–836 (1979).

    MATH  Google Scholar 

  91. 91.

    Cleveland, W. S. A program for smoothing scatterplots by robust locally weighted fitting. Am. Stat. 35, 54 (1981).

    Google Scholar 

  92. 92.

    Lisiecki, L. E., & Raymo M. E. A. Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanogr. 20, PA1003 (2005).

    ADS  Google Scholar 

  93. 93.

    Pickering, R. et al. U–Pb-dated flowstones restrict South African early hominin record to dry climate phases. Nature 565, 226–229 (2019).

    ADS  CAS  Google Scholar 

  94. 94.

    Chuan, G. K. in The Physical Geography of Southeast Asia (ed. Gupta, A.) 80–93 (Oxford Univ. Press, 2005).

  95. 95.

    Candy, I. et al. Pronounced warmth during early Middle Pleistocene interglacials: investigating the Mid-Brunhes Event in the British terrestrial sequence. Earth Sci. Rev. 103, 183–196 (2010).

    ADS  Google Scholar 

  96. 96.

    Meckler, A. N., Clarkson, M. O., Cobb, K. M., Sodemann, H. & Adkins, J. F. Interglacial hydroclimate in the tropical west Pacific through the Late Pleistocene. Science 336, 1301–1304 (2012).

    ADS  CAS  Google Scholar 

  97. 97.

    Cheng, H. et al. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534, 640–646 (2016).

    ADS  CAS  Google Scholar 

  98. 98.

    Maloney, B. K. & McCormac, F. G. Palaeoenvironments of north Sumatra: a 30,000 year old pollen record from Pea Bullok. Bull. Indo-Pacific Prehist. Ass. 14, 73–82 (1996).

    Google Scholar 

  99. 99.

    van der Kaars, W. A. & Dam, M. A. C. A. 135,000-year record of vegetational and climatic change from the Bandung area, West-Java, Indonesia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 117, 55–72 (1995).

    Google Scholar 

  100. 100.

    van der Kaars, W. A. & Dam, M. A. C. Vegetation and climate change in West-Java, Indonesia during the last 135,000 years. Quat. Int. 37, 67–71 (1997).

    Google Scholar 

  101. 101.

    Wurster, C. M. et al. Forest contraction in north equatorial Southeast Asia during the last glacial period. Proc. Natl Acad. Sci. USA 107, 15508–15511 (2010).

    ADS  CAS  Google Scholar 

  102. 102.

    Wurster, C. M., Rifai, H., Zhou, B., Haig, J. & Bird, M. I. Savanna in equatorial Borneo during the Late Pleistocene. Sci. Rep. 9, 6392 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Dubois, N. et al. Indonesian vegetation response to changes in rainfall seasonality over the past 25,000 years. Nat. Geosci. 7, 513–517 (2014).

    ADS  CAS  Google Scholar 

  104. 104.

    Sun, X. et al. Deep-sea pollen from the South China Sea: Pleistocene indicators of East Asian monsoon. Mar. Geol. 201, 97–118 (2003).

    ADS  CAS  Google Scholar 

  105. 105.

    Yu, S. et al. Pollen record in the northwestern continental shelf of the South China Sea in the past 82 ka: paleoenvironmental changes in the last glacial period. J. Asian Earth Sci. 199, 104457 (2020).

    Google Scholar 

  106. 106.

    IUCN. The IUCN Red List of Threatened Species. Version 2019-3 http://www.iucnredlist.org (accessed 6 November 2019).

  107. 107.

    Yang, D. et al. Researches of Ailuropoda–Stegodon Fauna from Gulin China (in Chinese with English abstract) (Chongqing, 1995).

  108. 108.

    Turvey, S. T. et al. Holocene survival of Late Pleistocene megafauna in China: a critical review of the evidence. Quat. Sci. Rev. 76, 156–166 (2013).

    ADS  Google Scholar 

  109. 109.

    Jin, C. et al. Chronological sequence of the early Pleistocene Gigantopithecus faunas from cave sites in the Chongzuo, Zuojiang River area, South China. Quat. Int. 354, 4–14 (2014).

    Google Scholar 

  110. 110.

    Rizal, Y. et al. Last appearance of Homo erectus at Ngandong, Java, 117,000–108,000 years ago. Nature 577, 381–385 (2020).

    CAS  Google Scholar 

  111. 111.

    Joordens, J. C. et al. Homo erectus at Trinil on Java used shells for tool production and engraving. Nature 518, 228–231 (2015).

    ADS  CAS  Google Scholar 

  112. 112.

    Zhang, Y. et al. New 400–320 ka Gigantopithecus blacki remains from Hejiang Cave, Chongzuo City, Guangxi, South China. Quat. Int. 354, 35–45 (2014).

    Google Scholar 

  113. 113.

    Han, D. & Xu, C. in Palaeoanthropology and Palaeolithic Archaeology in the People’s Republic of China (eds Rukang, W. & Olsen, J. W.) 267–289 (Academic, 1985).

  114. 114.

    Lu, C., Xu, X. & Sun, X. Re-dating Changyang Cave in Hubei Province, southern China. Quat. Int. 537, 1–8 (2020).

    Google Scholar 

  115. 115.

    van den Bergh, G. D. et al. The Early Pleistocene terrestrial vertebrate faunal sequence of Java, Indonesia. J. Vert. Paleol. Abstract 210 (2019).

  116. 116.

    Dong, W. et al. New materials of Early Pleistocene Sus from Sanhe Cave, Chongzuo, Guangxi, South China. Acta Anthropol. Sin. 32, 63–76 (2013).

    Google Scholar 

  117. 117.

    Shao, Q. et al. Coupled ESR and U-series dating of early Pleistocene Gigantopithecus faunas at Mohui and Sanhe Caves, Guangxi, southern China. Quat. Geochronol. 30, 524–528 (2015).

    Google Scholar 

  118. 118.

    Rink, W. J., Wei, W., Bekken, D. & Jones, H. L. Geochronology of Ailuropoda–Stegodon fauna and Gigantopithecus in Guangxi Province, southern China. Quat. Res. 69, 377–387 (2008).

    CAS  Google Scholar 

  119. 119.

    Wang, Y., Jin, C. Z. & Mead, J. I. New remains of Sinomastodon yangziensis (Proboscidea, Gomphotheriidae) from Sanhe karst cave, with discussion on the evolution of Pleistocene Sinomastodon in South China. Quat. Int. 339–340, 90–96 (2014).

    Google Scholar 

  120. 120.

    Duval, M. et al. Direct ESR dating of the Pleistocene vertebrate assemblage from Khok Sung locality, Nakhon Ratchasima Province, Northeast Thailand. Pal. Electr. 22, 1–25 (2019).

    Google Scholar 

  121. 121.

    Li, H., Li, C. & Kuman, K. Longgudong, an Early Pleistocene site in Jianshi, South China, with stratigraphic association of human teeth and lithics. Sci. China Earth Sci. 60, 452–462 (2017).

    ADS  CAS  Google Scholar 

  122. 122.

    Bacon, A. M. et al. Late Pleistocene mammalian assemblages of Southeast Asia: new dating, mortality profiles and evolution of the predator–prey relationships in an environmental context. Palaeogeogr. Palaeoclimatol. Palaeoecol. 422, 101–127 (2015).

    Google Scholar 

  123. 123.

    Westaway, K. E. et al. Age and biostratigraphic significance of the Punung rainforest fauna, East Java, Indonesia, and implications for Pongo and Homo. J. Hum. Evol. 53, 709–717 (2007).

    CAS  Google Scholar 

  124. 124.

    Matsu’ura, S. et al. Age control of the first appearance datum for Javanese Homo erectus in the Sangiran area. Science 367, 210–214 (2020).

    ADS  Google Scholar 

  125. 125.

    Sun, L. et al. Magnetochronological sequence of the early Pleistocene Gigantopithecus faunas in Chongzuo, Guangxi, southern China. Quat. Int. 354, 15–23 (2014).

    Google Scholar 

  126. 126.

    Esposito, M., Reyss, J. L., Chaimanee, Y. & Jaeger, J. J. U-series dating of fossil teeth and carbonates from Snake Cave, Thailand. J. Archaeol. Sci. 29, 341–349 (2002).

    Google Scholar 

  127. 127.

    Storm, P. et al. U-series and radiocarbon analyses of human and faunal remains from Wajak, Indonesia. J. Hum. Evol. 64, 356–365 (2013).

    Google Scholar 

Download references

Acknowledgements

We thank E. Hoeger, R. Voss, L. Kok Peng, A. van Heteren, J. Cuisin, V. Nicolas, G. Véron, J. Lesur and C. Lefèvre for allowing access to specimens under their care, N. Boivin and the Max Planck Society for support and J. Ilgner, M. Lucas, E. Perruchini and S. Marzo for their assistance with analysis of the samples. The map in Fig. 1 was provided by CartoGIS Services, ANU College of Asia and the Pacific, The Australian National University; we thank S. Potter and K. Pelling for providing the map. This research was supported by an Australian Research Council Future Fellowship to J.L. (FT160100450). P.R. was funded by the Max Planck Society and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 850709).

Author information

Affiliations

Authors

Contributions

J.L. conceived this research and conducted the statistical analyses. P.R. performed the stable isotope analyses. Both authors contributed equally to study design, data acquisition, interpretation of data and the writing of the final manuscript.

Corresponding authors

Correspondence to Julien Louys or Patrick Roberts.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Thure Cerling and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Distribution of δ13C values across the Quaternary.

Distribution is shown with a jitter plot and corresponding kernel density for Indochina (blue) and Sundaland (red). Kernel densities are exaggerated vertically, such that the peaks for both provinces are equal. Shaded boxes represent the division between δ13C values associated with forests (left) and grasslands (right).

Extended Data Fig. 2 Temporal trends of δ13C and δ18O values under different geochronological scenarios.

a, δ13C values assuming minimum age for each site. b, δ18O values assuming minimum age for each site. c, δ13C values assuming median age for each site. d, δ18O values assuming median age for each site. e, δ13C values assuming maximum age for each site. f, δ18O values assuming maximum age for each site. Each panel is shown relative to the Lisiecki Raymo benthic oxygen-isotope stack. The 95% confidence interval for each curve was based on 999 random replicates using resampling of residuals.

Extended Data Fig. 3 Distribution of δ13C values for browsers across fossil sites through Southeast Asia.

Indochina, dark green; Sundaland, light green. Horizontal line represents the −29‰ zone that indicates the beginning of subcanopy and closed-canopy environments. The long lower whiskers in the box and whisker plot, which indicate a very negatively skewed distribution, are most closely associated with highly stratified forests. The boxes show the median and the lower (25%) and upper (75%) quartiles; the whiskers encompass the minimum and maximum values. Independent sample sizes: Juyuandong, n = 4; Longudong, n = 26; Mohui, n = 5; Sanhe, n = 25; Semedo, n = 6; Sangiran, n = 4; Upper Pubu, n = 4; Khok Sung, n = 5; Pha Bong, n = 15; Tham Wiman Nakin, n = 10; Baxian, n = 32; Boh Damban, n = 18; Nam Lot, n = 39; Quzai, n = 32; Sibrambang, n = 6; Wajak, n = 4; Cipeundeuy, n = 2; Indochina, n = 74; and Sundaland, n = 158.

Extended Data Fig. 4 Changes in mean δ13C and δ18O values for mammals classified at the ordinal level.

Continuities (non-significant differences in mean) of δ13C values within orders between epochs are illustrated with arrows at the top of each plot. Continuities between orders in a single epoch are illustrated with circles bounding similar δ13C means. Variation within orders and epochs is indicated at 1 s.d.

Extended Data Table 1 Sites included in the analyses with corresponding sources for the isotope data
Extended Data Table 2 Univariate statistics for each geological subepoch and biogeographical province
Extended Data Table 3 Univariate statistics for each geological subepoch and trophic group
Extended Data Table 4 Count data for Early and Middle Pleistocene herbivores and omnivores
Extended Data Table 5 Age ranges for fossil sites and the time bins to which they were allocated for each age modelling scenario
Extended Data Table 6 Stable isotope values for different orders of mammals across different geological subepochs and epochs of the Quaternary

Supplementary information

Supplementary Table

This excel spreadsheet lists all the isotope data considered in the manuscript, including all published data, raw original data, and fractionation adjustments. Worksheet 1 lists the combined dataset. Worksheet 2 list data from Zoologische Staatssammlung München (ZSM), Germany; Worksheet 3 the Lee Kong Chian Natural History Museum (LKCNHM); Worksheet 4 the Muséum National d’Histoire Naturelle (MNHN), Paris, France; and Worksheet 5 the American Museum of Natural History (AMNH), New York, United States of America.

Reporting Summary

Peer Review File

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Louys, J., Roberts, P. Environmental drivers of megafauna and hominin extinction in Southeast Asia. Nature 586, 402–406 (2020). https://doi.org/10.1038/s41586-020-2810-y

Download citation

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing