A giant planet candidate transiting a white dwarf

Abstract

Astronomers have discovered thousands of planets outside the Solar System1, most of which orbit stars that will eventually evolve into red giants and then into white dwarfs. During the red giant phase, any close-orbiting planets will be engulfed by the star2, but more distant planets can survive this phase and remain in orbit around the white dwarf3,4. Some white dwarfs show evidence for rocky material floating in their atmospheres5, in warm debris disks6,7,8,9 or orbiting very closely10,11,12, which has been interpreted as the debris of rocky planets that were scattered inwards and tidally disrupted13. Recently, the discovery of a gaseous debris disk with a composition similar to that of ice giant planets14 demonstrated that massive planets might also find their way into tight orbits around white dwarfs, but it is unclear whether these planets can survive the journey. So far, no intact planets have been detected in close orbits around white dwarfs. Here we report the observation of a giant planet candidate transiting the white dwarf WD 1856+534 (TIC 267574918) every 1.4 days. We observed and modelled the periodic dimming of the white dwarf caused by the planet candidate passing in front of the star in its orbit. The planet candidate is roughly the same size as Jupiter and is no more than 14 times as massive (with 95 per cent confidence). Other cases of white dwarfs with close brown dwarf or stellar companions are explained as the consequence of common-envelope evolution, wherein the original orbit is enveloped during the red giant phase and shrinks owing to friction. In this case, however, the long orbital period (compared with other white dwarfs with close brown dwarf or stellar companions) and low mass of the planet candidate make common-envelope evolution less likely. Instead, our findings for the WD 1856+534 system indicate that giant planets can be scattered into tight orbits without being tidally disrupted, motivating the search for smaller transiting planets around white dwarfs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Transit observations of WD 1856.
Fig. 2: Spectroscopic observations of WD 1856.
Fig. 3: Allowed mass range for WD 1856 b as a function of the system age.

Data availability

We provide all reduced light curves and spectra with the manuscript. The Spitzer images are available for download at the Spitzer Heritage Archive (http://irsa.ipac.caltech.edu/applications/Spitzer/SHA/), and the TESS images and light curves are available from the Mikulski Archive for Space Telescopes (https://archive.stsci.edu/tess/). Source data are provided with this paper.

Code availability

Much of the code used to produce these results is publicly available and linked throughout the paper. We wrote custom software to analyse the data collected in this project. Though this code was not written with distribution in mind, it is available online at https://github.com/avanderburg/.

References

  1. 1.

    Akeson, R. L. et al. The NASA Exoplanet Archive: data and tools for exoplanet research. Publ. Astron. Soc. Pacif. 125, 989–999 (2013).

    ADS  Google Scholar 

  2. 2.

    Villaver, E. & Livio, M. The orbital evolution of gas giant planets around giant stars. Astrophys. J. Lett. 705, 81–85 (2009).

    ADS  Google Scholar 

  3. 3.

    Luhman, K. L., Burgasser, A. J. & Bochanski, J. J. Discovery of a candidate for the coolest known brown dwarf. Astrophys. J. Lett. 730, 9 (2011).

    ADS  Google Scholar 

  4. 4.

    Marsh, T. R. et al. The planets around NN Serpentis: still there. Mon. Not. R. Astron. Soc. 437, 475–488 (2014).

    ADS  Google Scholar 

  5. 5.

    Jura, M. A tidally disrupted asteroid around the white dwarf G29–38. Astrophys. J. Lett. 584, 91–94 (2003).

    ADS  Google Scholar 

  6. 6.

    Kilic, M., von Hippel, T., Leggett, S. K. & Winget, D. E. Excess infrared radiation from the massive DAZ white dwarf GD 362: a debris disk? Astrophys. J. Lett. 632, 115–118 (2005).

    ADS  Google Scholar 

  7. 7.

    Becklin, E. E. et al. A dusty disk around GD 362, a white dwarf with a uniquely high photospheric metal abundance. Astrophys. J. Lett. 632, 119–122 (2005).

    ADS  Google Scholar 

  8. 8.

    Gänsicke, B. T., Marsh, T. R., Southworth, J. & Rebassa-Mansergas, A. A gaseous metal disk around a white dwarf. Science 314, 1908 (2006).

    PubMed  ADS  Google Scholar 

  9. 9.

    Wilson, T. G., Farihi, J., Gänsicke, B. T. & Swan, A. The unbiased frequency of planetary signatures around single and binary white dwarfs using Spitzer and Hubble. Mon. Not. R. Astron. Soc. 487, 133–146 (2019).

    ADS  CAS  Google Scholar 

  10. 10.

    Vanderburg, A. et al. A disintegrating minor planet transiting a white dwarf. Nature 526, 546–549 (2015).

    PubMed  ADS  CAS  Google Scholar 

  11. 11.

    Manser, C. J. et al. A planetesimal orbiting within the debris disc around a white dwarf star. Science 364, 66–69 (2019).

    PubMed  ADS  CAS  Google Scholar 

  12. 12.

    Vanderbosch, Z. et al. A white dwarf with transiting circumstellar material far outside the Roche limit. Astrophys. J. 897, 171 (2020).

    ADS  Google Scholar 

  13. 13.

    Debes, J. H. & Sigurdsson, S. Are there unstable planetary systems around white dwarfs? Astrophys. J. 572, 556–565 (2002).

    ADS  Google Scholar 

  14. 14.

    Gänsicke, B. T. et al. Accretion of a giant planet onto a white dwarf star. Nature 576, 61–64 (2019).

    PubMed  ADS  Google Scholar 

  15. 15.

    McCook, G. P. & Sion, E. M. A catalog of spectroscopically identified white dwarfs. Astrophys. J. Suppl. Ser. 121, 1–130 (1999).

    ADS  Google Scholar 

  16. 16.

    Nelson, L., Schwab, J., Ristic, M. & Rappaport, S. Minimum orbital period of precataclysmic variables. Astrophys. J. 866, 88 (2018).

    ADS  Google Scholar 

  17. 17.

    Marley, M., Saumon, D., Morley, C. & Fortney, J. Sonora 2018: Cloud-free, Solar Composition, Solar C/O Substellar Atmosphere Models and Spectra (2018); https://doi.org/10.5281/zenodo.1309035

  18. 18.

    Spiegel, D. S., Burrows, A. & Milsom, J. A. The deuterium-burning mass limit for brown dwarfs and giant planets. Astrophys. J. 727, 57 (2011).

    ADS  Google Scholar 

  19. 19.

    Casewell, S. L. et al. WD0837+185: the formation and evolution of an extreme mass-ratio white-dwarf–brown-dwarf binary in Praesepe. Astrophys. J. Lett. 759, 34 (2012).

    ADS  Google Scholar 

  20. 20.

    Littlefair, S. P. et al. The substellar companion in the eclipsing white dwarf binary SDSS J141126.20+200911.1. Mon. Not. R. Astron. Soc. 445, 2106–2115 (2014).

    ADS  CAS  Google Scholar 

  21. 21.

    Rappaport, S. et al. WD 1202-024: the shortest-period pre-cataclysmic variable. Mon. Not. R. Astron. Soc. 471, 948–961 (2017).

    ADS  CAS  Google Scholar 

  22. 22.

    Parsons, S. G. et al. Two white dwarfs in ultrashort binaries with detached, eclipsing, likely sub-stellar companions detected by K2. Mon. Not. R. Astron. Soc. 471, 976–986 (2017).

    ADS  CAS  Google Scholar 

  23. 23.

    Paczynski, B. Common-envelope binaries. In International Astronomical Union Symp. No. 73: Structure and Evolution of Close Binary Systems (eds Eggleton, P., Mitton, S. & Whelan, J.) 75–80 (Reidel, 1976).

  24. 24.

    Xu, X.-J. & Li, X.-D. On the binding energy parameter λ of common-envelope evolution. Astrophys. J. 716, 114–121 (2010).

    ADS  Google Scholar 

  25. 25.

    Veras, D. & Gänsicke, B. T. Detectable close-in planets around white dwarfs through late unpacking. Mon. Not. R. Astron. Soc. 447, 1049–1058 (2015).

    ADS  Google Scholar 

  26. 26.

    Goldreich, P. & Soter, S. Q in the Solar System. Icarus 5, 375–389 (1966).

    ADS  Google Scholar 

  27. 27.

    Veras, D. & Fuller, J. Tidal circularization of gaseous planets orbiting white dwarfs. Mon. Not. R. Astron. Soc. 489, 2941–2953 (2019).

    ADS  Google Scholar 

  28. 28.

    Kreidberg, L. et al. Clouds in the atmosphere of the super-Earth exoplanet GJ1214b. Nature 505, 69–72 (2014).

    PubMed  ADS  Google Scholar 

  29. 29.

    Agol, E. Transit surveys for Earths in the habitable zones of white dwarfs. Astrophys. J. Lett. 731, 31 (2011).

    ADS  Google Scholar 

  30. 30.

    Boss, A. P. et al. Working group on extrasolar planets. Proc. International Astronomical Union A 26A, 183–186 (2005).

    ADS  Google Scholar 

  31. 31.

    Ricker, G. R. et al. Transiting Exoplanet Survey Satellite (TESS). J. Astron. Telesc. Instrum. Syst. 1, 014003 (2014).

    ADS  Google Scholar 

  32. 32.

    Dufour, P. et al. The Montreal White Dwarf Database: a tool for the community. In 20th European White Dwarf Workshop (EuroWD16) (eds Tremblay, P.-E., Gaensicke, B. & Marsh, T.) 3–8 (2017).

  33. 33.

    Stassun. K. G. et al. The TESS Input Catalog and candidate target list. Astron. J. 156, 102 (2018); correction 156, 183 (2018).

    ADS  Google Scholar 

  34. 34.

    Gould, A. & Morgan, C. W. Transit target selection using reduced proper motions. Astrophys. J. 585, 1056–1061 (2003).

    ADS  Google Scholar 

  35. 35.

    Altmann, M., Roeser, S., Demleitner, M., Bastian, U. & Schilbach, E. Hot Stuff for One Year (HSOY). A 583 million star proper motion catalogue derived from Gaia DR1 and PPMXL. Astron. Astrophys. 600, L4 (2017).

    ADS  Google Scholar 

  36. 36.

    Gentile Fusillo, N. P. et al. A Gaia Data Release 2 catalogue of white dwarfs and a comparison with SDSS. Mon. Not. R. Astron. Soc. 482, 4570–4591 (2019).

    ADS  Google Scholar 

  37. 37.

    Jenkins, J. M. Overview of the TESS Science Pipeline. In AAS/Division for Extreme Solar Systems III (chairs Mayor, M. & Rasio, F.) 106.05 (2015).

  38. 38.

    Jenkins, J. M. et al. The TESS science processing operations center. In Proc. SPIE 9913 Software and Cyberinfrastructure for Astronomy IV (eds Chiozzi, G. & Guzman, J. C.) 99133E (2016).

  39. 39.

    Smith, J. C. et al. Kepler presearch data conditioning II—a Bayesian approach to systematic error correction. Publ. Astron. Soc. Pacif. 124, 1000–1014 (2012).

    ADS  Google Scholar 

  40. 40.

    Stumpe, M. C. et al. Multiscale systematic error correction via wavelet-based bandsplitting in Kepler data. Publ. Astron. Soc. Pacif. 126, 100 (2014).

    ADS  Google Scholar 

  41. 41.

    Jenkins, J. M. The impact of solar-like variability on the detectability of transiting terrestrial planets. Astrophys. J. 575, 493–505 (2002).

    ADS  Google Scholar 

  42. 42.

    Evans, D. F. Evidence for unresolved exoplanet-hosting binaries in Gaia DR2. Res. Notes AAS 2, 20 (2018).

    ADS  Google Scholar 

  43. 43.

    Rizzuto, A. C. et al. Zodiacal Exoplanets in Time (ZEIT). VIII. A two-planet system in Praesepe from K2 Campaign 16. Astron. J. 156, 195 (2018).

    ADS  CAS  Google Scholar 

  44. 44.

    Lindegren, L. Re-normalising the Astrometric Chi-Square in Gaia DR2 Gaia Technical Note No. GAIA-C3-TN-LU-LL-124-01 (Gaia DPAC, 2018).

  45. 45.

    Abell, G. O. Globular clusters and planetary nebulae discovered on the National Geographic Society–Palomar Observatory Sky Survey. Publ. Astron. Soc. Pacif. 67, 258–261 (1955).

    ADS  Google Scholar 

  46. 46.

    Rappaport, S. et al. Drifting asteroid fragments around WD 1145+017. Mon. Not. R. Astron. Soc. 458, 3904–3917 (2016).

    ADS  CAS  Google Scholar 

  47. 47.

    Narita, N. et al. MuSCAT2: four-color simultaneous camera for the 1.52-m Telescopio Carlos Sánchez. J. Astron. Telesc. Instrum. Syst. 5, 015001 (2019).

    ADS  Google Scholar 

  48. 48.

    Schmidt, G. D., Weymann, R. J. & Foltz, C. B. A. Moderate-resolution, high-throughput CCD channel for the MMT Spectrograph. Publ. Astron. Soc. Pacif. 101, 713 (1989).

    ADS  Google Scholar 

  49. 49.

    Miller, J. S. & Stone, R. P. The Kast Double Spectograph Lick Observatory Technical Report 66 (University of California Observatories/Lick Observatory, 1994).

  50. 50.

    Chonis, T. S., Hill, G. J., Lee, H., Tuttle, S. E. & Vattiat, B. L. LRS2: the new facility low resolution integral field spectrograph for the Hobby–Eberly telescope. In Proc. SPIE Astronomical Telescopes and Instrumentation Vol. 9147 (eds Ramsay, S. K., McLean, I. S. & Takami, H.) 91470A (SPIE, 2014).

  51. 51.

    Zeimann, G. Panacea source code (accessed 24 June 2020); https://github.com/grzeimann/Panacea (2019).

  52. 52.

    Elias, J. H. et al. Design of the Gemini near-infrared spectrograph. In Proc. Ground-based and Airborne Instrumentation for Astronomy (eds McLean, I. S. & Iye, M.) 62694C (2006).

  53. 53.

    Mason, R. E. et al. The nuclear near-infrared spectral properties of nearby galaxies. Astrophys. J. Suppl. Ser. 217, 13 (2015).

    ADS  Google Scholar 

  54. 54.

    Telting, J. H. et al. FIES: the high-resolution Fiber-fed Echelle Spectrograph at the Nordic Optical Telescope. Astron. Nachr. 335, 41 (2014).

    ADS  CAS  Google Scholar 

  55. 55.

    Stempels, E. & Telting, J. FIEStool: automated data reduction for FIber-fed Echelle Spectrograph (FIES) Astrophysics Source Code Library http://ascl.net/1708.009 (2017).

  56. 56.

    Fűrész, G. Design and Application of High Resolution and Multiobject Spectrographs: Dynamical Studies of Open Clusters. PhD thesis, Univ. Szeged (2008).

  57. 57.

    Buchhave, L. A. et al. An abundance of small exoplanets around stars with a wide range of metallicities. Nature 486, 375–377 (2012).

    PubMed  ADS  CAS  Google Scholar 

  58. 58.

    Stefanik, R. P., Latham, D. W. & Torres, G. Radial-velocity standard stars. In IAU Colloquium 170: Precise Stellar Radial Velocities Vol. 185 (eds Hearnshaw, J. B. & Scarfe, C. D.) 354–366 (1999).

  59. 59.

    Lépine, S. et al. A spectroscopic catalog of the brightest (J < 9) M dwarfs in the northern sky. Astron. J. 145, 102 (2013).

    ADS  Google Scholar 

  60. 60.

    Cubillos, P. et al. WASP-8b: characterization of a cool and eccentric exoplanet with Spitzer. Astrophys. J. 768, 42 (2013).

    ADS  Google Scholar 

  61. 61.

    Xu, S. & Jura, M. Spitzer observations of white dwarfs: the missing planetary debris around DZ stars. Astrophys. J. 745, 88 (2012).

    ADS  Google Scholar 

  62. 62.

    Xu, S. et al. Infrared variability of two dusty white dwarfs. Astrophys. J. 866, 108 (2018).

    ADS  Google Scholar 

  63. 63.

    Blouin, S., Dufour, P., Thibeault, C. & Allard, N. F. A new generation of cool white dwarf atmosphere models. IV. Revisiting the spectral evolution of cool white dwarfs. Astrophys. J. 878, 63 (2019).

    CAS  Google Scholar 

  64. 64.

    Blouin, S., Dufour, P. & Allard, N. F. A new generation of cool white dwarf atmosphere models. I. Theoretical framework and applications to DZ stars. Astrophys. J. 863, 184 (2018).

    ADS  Google Scholar 

  65. 65.

    Kowalski, P. M. Infrared absorption of dense helium and its importance in the atmospheres of cool white dwarfs. Astron. Astrophys. 566, L8 (2014).

    ADS  Google Scholar 

  66. 66.

    Stassun, K. G., Corsaro, E., Pepper, J. A. & Gaudi, B. S. Empirical accurate masses and radii of single stars with TESS and Gaia. Astron. J. 155, 22 (2018).

    ADS  Google Scholar 

  67. 67.

    Eggleton, P. Evolutionary Processes in Binary and Multiple Stars (Cambridge Univ. Press, 2006).

  68. 68.

    Zapolsky, H. S. & Salpeter, E. E. The mass–radius relation for cold spheres of low mass. Astrophys. J. 158, 809 (1969).

    ADS  Google Scholar 

  69. 69.

    Mestel, L. On the theory of white dwarf stars. I. The energy sources of white dwarfs. Mon. Not. R. Astron. Soc. 112, 583 (1952).

    ADS  Google Scholar 

  70. 70.

    van Horn, H. M. Cooling of white dwarfs. In International Astronomical Union Symp. No. 42: White Dwarfs (ed. Luyten, W. J.) 97–115 (Reidel, 1971).

  71. 71.

    Mann, A. W., Feiden, G. A., Gaidos, E., Boyajian, T. & von Braun, K. How to constrain your M dwarf: measuring effective temperature, bolometric luminosity, mass, and radius. Astrophys. J. 804, 64 (2015); erratum 819, 87 (2016).

    ADS  Google Scholar 

  72. 72.

    Mann, A. W. et al. How to constrain your M dwarf. II. The mass–luminosity–metallicity relation from 0.075 to 0.70 Solar masses. Astrophys. J. 871, 63 (2019).

    ADS  CAS  Google Scholar 

  73. 73.

    Stassun, K. G. et al. The revised TESS input catalog and candidate target list. Astron. J. 158, 138 (2019).

    ADS  Google Scholar 

  74. 74.

    Pearce, L. A. Linear Orbits for the Impatient (accessed 24 June 2020); https://github.com/logan-pearce/LOFTI (2019).

  75. 75.

    Pearce, L. A. et al. Orbital parameter determination for wide stellar binary systems in the age of Gaia. Astrophys. J. 894, 115 (2020).

    ADS  Google Scholar 

  76. 76.

    Blunt, S. et al. Orbits for the Impatient: a Bayesian rejection-sampling method for quickly fitting the orbits of long-period exoplanets. Astron. J. 153, 229 (2017).

    ADS  Google Scholar 

  77. 77.

    Eastman, J., Siverd, R. & Gaudi, B. S. Achieving better than 1 minute accuracy in the heliocentric and barycentric Julian dates. Publ. Astron. Soc. Pacif. 122, 935 (2010).

    ADS  Google Scholar 

  78. 78.

    Mandel, K. & Agol, E. Analytic light curves for planetary transit searches. Astrophys. J. Lett. 580, 171–175 (2002).

    ADS  Google Scholar 

  79. 79.

    Eastman, J., Gaudi, B. S. & Agol, E. EXOFAST: a fast exoplanetary fitting suite in IDL. Publ. Astron. Soc. Pacif. 125, 83–112 (2013).

    ADS  Google Scholar 

  80. 80.

    Gianninas, A., Strickland, B. D., Kilic, M. & Bergeron, P. Limb-darkening coefficients for eclipsing white dwarfs. Astrophys. J. 766, 3 (2013).

    ADS  Google Scholar 

  81. 81.

    Claret, A. et al. Gravity and limb-darkening coefficients for compact stars: DA, DB, and DBA eclipsing white dwarfs. Astron. Astrophys. 634, A93 (2020).

    CAS  Google Scholar 

  82. 82.

    Claret, A. & Bloemen, S. Gravity and limb-darkening coefficients for the Kepler, CoRoT, Spitzer, uvby, UBVRIJHK, and Sloan photometric systems. Astron. Astrophys. 529, A75 (2011).

    ADS  Google Scholar 

  83. 83.

    Seager, S. & Mallén-Ornelas, G. A unique solution of planet and star parameters from an extrasolar planet transit light curve. Astrophys. J. 585, 1038–1055 (2003).

    ADS  Google Scholar 

  84. 84.

    Lucy, L. B. & Sweeney, M. A. Spectroscopic binaries with circular orbits. Astron. J. 76, 544–556 (1971).

    ADS  Google Scholar 

  85. 85.

    Goodman, J. & Weare, J. Ensemble samplers with affine invariance. Comm. App. Math. Comp. Sci. 5, 65–80 (2010).

    MathSciNet  MATH  Google Scholar 

  86. 86.

    Kopal, Z. Close Binary Systems (Chapman & Hall, 1959).

  87. 87.

    Kipping, D. M. Efficient, uninformative sampling of limb darkening coefficients for two-parameter laws. Mon. Not. R. Astron. Soc. 435, 2152–2160 (2013).

    ADS  Google Scholar 

  88. 88.

    Saumon, D. & Marley, M. S. The evolution of L and T dwarfs in color–magnitude diagrams. Astrophys. J. 689, 1327–1344 (2008).

    ADS  Google Scholar 

  89. 89.

    Nelson, L. A., Rappaport, S. A. & Joss, P. C. On the nature of the companion to Van Biesbroeck 8. Nature 316, 42–44 (1985).

    ADS  Google Scholar 

  90. 90.

    Chabrier, G., Johansen, A., Janson, M. & Rafikov, R. Giant planet and brown dwarf formation. In Protostars and Planets VI (eds Beuther, H. et al.) 619–642 (Univ. Arizona Press, 2014).

  91. 91.

    Bowler, B. P., Blunt, S. C. & Nielsen, E. L. Population-level eccentricity distributions of imaged exoplanets and brown dwarf companions: dynamical evidence for distinct formation channels. Astron. J. 159, 63 (2020).

    ADS  Google Scholar 

  92. 92.

    Phillips, M. W. et al. A new set of atmosphere and evolution models for cool T–Y brown dwarfs and giant exoplanets. Astron. Astrophys. 637, A38 (2020).

    Google Scholar 

  93. 93.

    Miles, B. E. et al. Observations of disequilibrium CO chemistry in the coldest brown dwarfs. Astron. J. 160, 63 (2020).

    ADS  Google Scholar 

  94. 94.

    Morley, C. V. et al. An L band spectrum of the coldest brown dwarf. Astrophys. J. 858, 97 (2018).

    ADS  Google Scholar 

  95. 95.

    Morley, C. V. et al. Water clouds in Y dwarfs and exoplanets. Astrophys. J. 787, 78 (2014).

    ADS  Google Scholar 

  96. 96.

    Shappee, B. J. et al. The man behind the curtain: X-rays drive the UV through NIR variability in the 2013 active galactic nucleus outburst in NGC 2617. Astrophys. J. 788, 48 (2014).

    ADS  Google Scholar 

  97. 97.

    Kochanek, C. S. et al. The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0. Publ. Astron. Soc. Pacif. 129, 104502 (2017).

    ADS  Google Scholar 

  98. 98.

    Butters, O. W. et al. The first WASP public data release. Astron. Astrophys. 520, L10 (2010).

    ADS  Google Scholar 

  99. 99.

    Gizis, J. E. M-subdwarfs: spectroscopic classification and the metallicity scale. Astron. J. 113, 806–822 (1997).

    ADS  CAS  Google Scholar 

  100. 100.

    Lépine, S., Rich, R. M. & Shara, M. M. Revised metallicity classes for low-mass stars: dwarfs (dM), subdwarfs (sdM), extreme subdwarfs (esdM), and ultrasubdwarfs (usdM). Astrophys. J. 669, 1235–1247 (2007).

    ADS  Google Scholar 

  101. 101.

    Mann, A. W., Brewer, J. M., Gaidos, E., Lépine, S. & Hilton, E. J. Prospecting in late-type dwarfs: a calibration of infrared and visible spectroscopic metallicities of late K and M dwarfs spanning 1.5 dex. Astron. J. 145, 52 (2013).

    ADS  Google Scholar 

  102. 102.

    Newton, E. R. et al. The Hα emission of nearby M dwarfs and its relation to stellar rotation. Astrophys. J. 834, 85 (2017).

    ADS  Google Scholar 

  103. 103.

    West, A. A. et al. The Sloan Digital Sky Survey data release 7 spectroscopic M dwarf catalog. I. Data. Astron. J. 141, 97 (2011).

    ADS  Google Scholar 

  104. 104.

    Coşkunoğlu, B. et al. Local stellar kinematics from RAVE data—I. Local standard of rest. Mon. Not. R. Astron. Soc. 412, 1237–1245 (2011).

    ADS  Google Scholar 

  105. 105.

    Bensby, T., Feltzing, S. & Oey, M. S. Exploring the Milky Way stellar disk. A detailed elemental abundance study of 714 F and G dwarf stars in the solar neighbourhood. Astron. Astrophys. 562, A71 (2014).

    ADS  Google Scholar 

  106. 106.

    Carrillo, A., Hawkins, K., Bowler, B. P., Cochran, W. & Vanderburg, A. Know thy star, know thy planet: chemo-kinematically characterizing TESS targets. Mon. Not. R. Astron. Soc. 491, 4365–4381 (2020).

    ADS  Google Scholar 

  107. 107.

    Kilic, M. et al. The ages of the thin disk, thick disk, and the halo from nearby white dwarfs. Astrophys. J. 837, 162 (2017).

    ADS  Google Scholar 

  108. 108.

    Haywood, M., Di Matteo, P., Lehnert, M. D., Katz, D. & Gómez, A. The age structure of stellar populations in the solar vicinity. Clues of a two-phase formation history of the Milky Way disk. Astron. Astrophys. 560, A109 (2013).

    Google Scholar 

  109. 109.

    Xiang, M. et al. The ages and masses of a million Galactic-disk main-sequence turnoff and subgiant stars from the LAMOST Galactic Spectroscopic Surveys. Astrophys. J. Suppl. Ser. 232, 2 (2017).

    ADS  Google Scholar 

  110. 110.

    Sharma, S. et al. The K2-HERMES Survey: age and metallicity of the thick disc. Mon. Not. R. Astron. Soc. 490, 5335–5352 (2019).

    ADS  Google Scholar 

  111. 111.

    Webbink, R. F. Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae. Astrophys. J. 277, 355–360 (1984).

    ADS  CAS  Google Scholar 

  112. 112.

    Pfahl, E., Rappaport, S. & Podsiadlowski, P. The Galactic population of low- and intermediate-mass X-ray binaries. Astrophys. J. 597, 1036–1048 (2003).

    ADS  CAS  Google Scholar 

  113. 113.

    Zorotovic, M., Schreiber, M. R., Gänsicke, B. T. & Nebot Gómez-Morán, A. Post-common-envelope binaries from SDSS. IX: Constraining the common-envelope efficiency. Astron. Astrophys. 520, A86 (2010).

    ADS  Google Scholar 

  114. 114.

    De Marco, O. et al. On the α formalism for the common envelope interaction. Mon. Not. R. Astron. Soc. 411, 2277–2292 (2011).

    ADS  Google Scholar 

  115. 115.

    Camacho, J. et al. Monte Carlo simulations of post-common-envelope white dwarf + main sequence binaries: comparison with the SDSS DR7 observed sample. Astron. Astrophys. 566, A86 (2014).

    Google Scholar 

  116. 116.

    Taam, R. E., Bodenheimer, P. & Ostriker, J. P. Double core evolution. I. A 16 M star with a 1 M neutron-star companion. Astrophys. J. 222, 269–280 (1978).

    ADS  CAS  Google Scholar 

  117. 117.

    Taam, R. E. & Bodenheimer, P. The common envelope evolution of massive stars. In X-Ray Binaries and Recycled Pulsars: Proc. NATO Advanced Research Workshop on X-Ray Binaries and the Formation of Binary and Millisecond Radio Pulsars (eds van den Heuvel, E. P. & Rappaport, S. A.) 281–291 (Springer Dordrecht, 1992).

  118. 118.

    Tauris, T. M. & Dewi, J. D. M. On the binding energy parameter of common envelope evolution. Dependency on the definition of the stellar core boundary during spiral-in. Astron. Astrophys. 369, 170–173 (2001).

    CAS  Google Scholar 

  119. 119.

    Rappaport, S. et al. Discovery of two new thermally bloated low-mass white dwarfs among the Kepler binaries. Astrophys. J. 803, 82 (2015).

    ADS  Google Scholar 

  120. 120.

    Choi, J. et al. Mesa Isochrones and Stellar Tracks (MIST). I. Solar-scaled models. Astrophys. J. 823, 102 (2016).

    ADS  Google Scholar 

  121. 121.

    Rappaport, S., Podsiadlowski, P., Joss, P. C., Di Stefano, R. & Han, Z. The relation between white dwarf mass and orbital period in wide binary radio pulsars. Mon. Not. R. Astron. Soc. 273, 731–741 (1995).

    ADS  Google Scholar 

  122. 122.

    Kalomeni, B. et al. Evolution of cataclysmic variables and related binaries containing a white dwarf. Astrophys. J. 833, 83 (2016).

    ADS  Google Scholar 

  123. 123.

    Passy, J.-C., Mac Low, M.-M. & De Marco, O. On the survival of brown dwarfs and planets engulfed by their giant host star. Astrophys. J. Lett. 759, 30 (2012).

    ADS  Google Scholar 

  124. 124.

    Bear, E. & Soker, N. Evaporation of Jupiter-like planets orbiting extreme horizontal branch stars. Mon. Not. R. Astron. Soc. 414, 1788–1792 (2011).

    ADS  CAS  Google Scholar 

  125. 125.

    Schreiber, M. R., Gänsicke, B. T., Toloza, O., Hernandez, M.-S. & Lagos, F. Cold giant planets evaporated by hot white dwarfs. Astrophys. J. 887, L4 (2019).

    ADS  CAS  Google Scholar 

  126. 126.

    Kozai, Y. Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 67, 591–598 (1962).

    MathSciNet  ADS  Google Scholar 

  127. 127.

    Lidov, M. L. The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies. Planet. Space Sci. 9, 719–759 (1962).

    ADS  Google Scholar 

  128. 128.

    Stephan, A. P., Naoz, S. & Zuckerman, B. Throwing icebergs at white dwarfs. Astrophys. J. Lett. 844, 16 (2017).

    ADS  Google Scholar 

  129. 129.

    Chambers, J. E. A hybrid symplectic integrator that permits close encounters between massive bodies. Mon. Not. R. Astron. Soc. 304, 793–799 (1999).

    ADS  Google Scholar 

  130. 130.

    Veras, D. & Fuller, J. The dynamical history of the evaporating or disrupted ice giant planet around white dwarf WD J0914+1914. Mon. Not. R. Astron. Soc. 492, 6059–6066 (2019).

    ADS  Google Scholar 

  131. 131.

    Lainey, V., Arlot, J.-E., Karatekin, Ö. & van Hoolst, T. Strong tidal dissipation in Io and Jupiter from astrometric observations. Nature 459, 957–959 (2009).

    PubMed  ADS  CAS  Google Scholar 

  132. 132.

    Kozakis, T., Kaltenegger, L. & Hoard, D. W. UV surface environments and atmospheres of Earth-like planets orbiting white dwarfs. Astrophys. J. 862, 69 (2018).

    ADS  Google Scholar 

  133. 133.

    Bonsor, A. & Veras, D. A wide binary trigger for white dwarf pollution. Mon. Not. R. Astron. Soc. 454, 53–63 (2015).

    ADS  Google Scholar 

  134. 134.

    Chang, Y. C. A study of the orientation of the orbit-planes of 16 visual binaries having determinate inclinations. Astron. J. 40, 11–15 (1929).

    ADS  Google Scholar 

  135. 135.

    Agati, J. L. et al. Are the orbital poles of binary stars in the solar neighbourhood anisotropically distributed? Astron. Astrophys. 574, A6 (2015).

    Google Scholar 

  136. 136.

    Heintz, W. D. A statistical study of binary stars. J. Roy. Astron. Soc. Can. 63, 275 (1969).

    ADS  Google Scholar 

  137. 137.

    Adams, F. C. & Bloch, A. M. Evolution of planetary orbits with stellar mass loss and tidal dissipation. Astrophys. J. 777, L30 (2013).

    ADS  Google Scholar 

  138. 138.

    Rasio, F. A., Tout, C. A., Lubow, S. H. & Livio, M. Tidal decay of close planetary orbits. Astrophys. J. 470, 1187 (1996).

    ADS  Google Scholar 

  139. 139.

    Payne, M. J., Veras, D., Holman, M. J. & Gänsicke, B. T. Liberating exomoons in white dwarf planetary systems. Mon. Not. R. Astron. Soc. 457, 217–231 (2016).

    ADS  Google Scholar 

  140. 140.

    Bromley, B. C., Kenyon, S. J., Geller, M. J. & Brown, W. R. Binary disruption by massive black holes: hypervelocity stars, S stars, and tidal disruption events. Astrophys. J. 749, L42 (2012).

    ADS  Google Scholar 

  141. 141.

    Faber, J. A., Rasio, F. A. & Willems, B. Tidal interactions and disruptions of giant planets on highly eccentric orbits. Icarus 175, 248–262 (2005).

    ADS  Google Scholar 

  142. 142.

    Mainetti, D. et al. The fine line between total and partial tidal disruption events. Astron. Astrophys. 600, A124 (2017).

    Google Scholar 

  143. 143.

    Kreidberg, L. Exoplanet atmosphere measurements from transmission spectroscopy and other planet star combined light observations. In Handbook of Exoplanets (eds Deeg, H. J. & Belmonte, J. A.) 2083–2105 (2018).

  144. 144.

    Stevenson, K. B. Quantifying and predicting the presence of clouds in exoplanet atmospheres. Astrophys. J. 817, L16 (2016).

    ADS  Google Scholar 

  145. 145.

    Loeb, A. & Gaudi, B. S. Periodic flux variability of stars due to the reflex Doppler effect induced by planetary companions. Astrophys. J. Lett. 588, 117–120 (2003).

    ADS  Google Scholar 

  146. 146.

    van Kerkwijk, M. H. et al. Observations of Doppler boosting in Kepler light curves. Astrophys. J. 715, 51–58 (2010).

    ADS  Google Scholar 

  147. 147.

    Rauer, H. et al. The PLATO 2.0 mission. Exp. Astron. 38, 249–330 (2014).

    ADS  Google Scholar 

  148. 148.

    Chambers, K. C. et al. The Pan-STARRS1 surveys. Preprint at: https://www.arxiv.org/abs/1612.05560 (2016).

  149. 149.

    Skrutskie, M. F. et al. The Two Micron All Sky Survey (2MASS). Astron. J. 131, 1163–1183 (2006).

    ADS  Google Scholar 

  150. 150.

    Cutri, R. M. et al. VizieR Online Data Catalog: AllWISE Data Release (Cutri+ 2013). VizieR Online Data Catalog II/328 (accessed 5 October 2019); http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=II/328

Download references

Acknowledgements

We thank S. Lepine for providing the archival spectrum of G 229-20 A, and P. Berlind and J. Irwin for collecting and extracting velocities from the TRES spectrum. We thank B.-O. Demory for comments on the manuscript, and F. Rasio, D. Veras, P. Gao, B. Kaiser, W. Torres, J. Irwin, J. J. Hermes, J. Eastman, A. Shporer and K. Hawkins for conversations. A.V.’s work was performed under contract with the California Institute of Technology (Caltech)/Jet Propulsion Laboratory (JPL) funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute. I.J.M.C. acknowledges support from the NSF through grant AST-1824644, and from NASA through Caltech/JPL grant RSA-1610091. T.D. acknowledges support from MIT’s Kavli Institute as a Kavli postdoctoral fellow. D.D. acknowledges support from NASA through Caltech/JPL grant RSA-1006130 and through the TESS Guest Investigator programme, grant 80NSSC19K1727. S.B. acknowledges support from the Laboratory Directed Research and Development programme of Los Alamos National Laboratory under project number 20190624PRD2. C.M. and B.Z. acknowledge support from NSF grants SPG-1826583 and SPG-1826550. A.V. was a NASA Sagan Fellow; J.C.B. is a 51 Pegasi b Fellow; L.A.P. is an NSF Graduate Research Fellow; A.C. is a Large Synoptic Survey Telescope Corporation Data Science Fellow; T.D. is a Kavli Fellow; and C.X.H. is a Juan Carlos Torres Fellow. Resources supporting this work were provided by the NASA High-End Computing (HEC) programme through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center for the production of the SPOC data products. This work is partially based on observations made with the Nordic Optical Telescope, operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias. This article is partly based on observations made with the MuSCAT2 instrument, developed by ABC, at Telescopio Carlos Sánchez operated on the island of Tenerife by the IAC in the Spanish Observatorio del Teide. This work is partly supported by JSPS KAKENHI, grant numbers JP17H04574, JP18H01265 and JP18H05439, and JST PRESTO grant number JPMJPR1775. This research has made use of NASA’s Astrophysics Data System, the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program, and the SIMBAD database, operated at CDS, Strasbourg, France. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. This work is partially based on observations obtained at the International Gemini Observatory, a program of NOIRLab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation, on behalf of the Gemini Observatory partnership: the National Science Foundation (United States), National Research Council (Canada), Agencia Nacional de Investigación y Desarrollo (Chile), Ministerio de Ciencia, Tecnología e Innovación (Argentina), Ministério da Ciência, Tecnologia, Inovações e Comunicações (Brazil), and Korea Astronomy and Space Science Institute (Republic of Korea). The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Maunakea has always had within the Indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain.

Author information

Affiliations

Authors

Contributions

A.V. led the TESS proposals, identified the planet candidate, organized observations, performed the transit and flux limit analysis, and wrote the majority of the manuscript. S.A.R. helped to organize observations, performed independent data analysis, and wrote portions of the manuscript. S.X. helped to organize observations, obtained and analysed the Gemini data, measured fluxes from the Spitzer data, and helped to guide the strategy of the manuscript. I.J.M.C., L. Kreidberg, V.G., B.B., D.B., J.L.C., D.D., C.D., X.G., S.R.K., F. Morales and L.Y. acquired and produced a light curve from the Spitzer data. S.A.R., J.C.B., L.N., B.Z., F.C.A. and J.J.L. investigated the formation of the WD 1856 system. B.G., F. Murgas, T.G.K., E.P., H.P., A.F. and N.N. acquired follow-up photometry. S.B., P.D. and K.G.S. determined the parameters of the white dwarf, and A.W.M. and E.R.N. studied the M-dwarf companions. C.M., G.Z., W.R.B., R.T., B.K., L.A.B., A.E.D. and A.I.H. acquired spectra of the white dwarf and/or M-dwarf companions. B.M.M., K.H. and T.D. performed an independent analysis of the TESS data, and J.A.L. performed an independent analysis of the white dwarf SED. C.V.M. provided expertise on brown dwarf models, and L. Kaltenegger investigated the system’s implications. L.A.P. determined parameters for the binary M-dwarf orbits and white dwarf/M-dwarf orbits, A.C. investigated the system’s galactic kinematics. G.R.R., R.K.V., D.W.L., S.S., J.N.W., J.M.J., D.A.C., K.A.C., K.D.C., J.D., A.G., N.M.G., C.X.H., J.P., M.E.R. and J.C.S. are members of the TESS mission team.

Corresponding author

Correspondence to Andrew Vanderburg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Artie Hatzes, Steven Parsons and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Archival imaging of WD 1856.

a, From the Palomar Observatory Sky Survey on a photographic plate with a blue-sensitive emulsion. b, From the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) survey in the i band. c, From the Pan-STARRS survey in the i band, zoomed out to show the co-moving M-dwarf pair (labelled G 229-20). d, Coadded TESS image from sector 14. The photometric apertures for the three sectors of TESS observations (14, 15 and 19) are shown as red-, purple- and blue-coloured outlines, respectively. The present-day location of WD 1856 is shown with a red cross in all images.

Extended Data Fig. 2 All transit observations of WD 1856.

From top to bottom, we show the light curves (arbitrarily offset for visual clarity) from TESS; data from several private telescopes in Arizona (operated by B.G. and T.G.K.) with odd and even-numbered transits shown separately; simultaneous light curves in four colours from MuSCAT2; a light curve from the GTC, and a light curve from Spitzer. The individual two-minute-cadence TESS flux measurements are shown as grey points, and the rose-coloured points are averages of the brightness in roughly 30 s in orbital phase. The TESS data have been corrected for dilution from nearby stars so that the transit depth matches that of the GTC data. Source data

Extended Data Fig. 3 Spectral energy distribution of WD 1856. Photometric measurements from Pan-STARRS148, 2MASS149, WISE150 and Spitzer are shown as blue, orange, dark red and pink points, respectively.

The formal 1σ (standard deviation) photometric uncertainties on the Pan-STARRS, WISE, and Spitzer points are smaller than the symbol size. Four different SED models are shown as solid curves: a pure hydrogen atmosphere model (red), a 50% hydrogen, 50% helium model (blue), a pure helium model (gold), and a blackbody curve (black). None of the SED models capture all of the SED’s features, but all four yield mostly consistent effective temperatures and stellar parameters.

Extended Data Fig. 4 Spectrum of WD 1856 near the Hα line.

Our summed Hobby–Eberly/LRS2 spectrum (black connected points) is shown in comparison with three atmosphere models: a pure hydrogen model (red), a 50% hydrogen, 50% helium model (blue), and a pure helium model (gold). We disfavour a pure hydrogen atmosphere on the basis of our non-detection of an Hα feature in our LRS2 spectra, but otherwise remain uncertain about the precise composition of the envelope of WD 1856.

Extended Data Fig. 5 Posterior probability distributions of transit parameters.

This ‘corner-plot’ shows correlations between pairs of parameters in our MCMC transit fit (with circular orbits enforced) and histograms of the marginalized posterior probability distributions for each parameter. For clarity, we have plotted correlations with the inclination angle i instead of the fit parameter cosi and subtract the median time of transit (tt). The orbital inclination i, scaled semimajor axis a/R⁎, and the planet–star radius ratio Rp/R⁎ are strongly correlated, owing to the grazing transit geometry, but constrained by the prior on the stellar density. We do not include rows for the GTC and Spitzer photometric jitter terms because these are nuisance parameters that showed no correlation with the other physical parameters.

Extended Data Fig. 6 Posterior probability distributions of transit parameters when eccentric orbits are allowed.

This ‘corner-plot’ shows correlations between pairs of parameters in our MCMC transit fit (allowing eccentric orbits) and histograms of the marginalized posterior probability distributions for each parameter. This plot shows a subset of the parameters that correlate with the orbital eccentricity. For clarity, we have plotted correlations with the eccentricity e, argument of periastron w and orbital inclination i instead of the fit parameters \(\sqrt{e}\cos \,\omega \), \(\sqrt{e}\sin \,\omega \) and δ.

Extended Data Fig. 7 Hα equivalent width for G 229-20 A/B compared to other nearby M dwarfs.

The histogram shows the Hα equivalent widths for a large sample of M dwarfs with similar spectral types from the Sloan Digital Sky Survey103. G 229-20 A/B (shown as a blue arrow) has a lower than average Hα equivalent width, but falls well within the distribution of field M dwarfs.

Extended Data Fig. 8 Theoretical relationships between the star’s radius and the mass of its core.

We show MIST120 evolution tracks in the radius–core mass plane for solar composition models with masses ranging from 1M–2.8M. The RGB phase is clearly identifiable for core masses between 0.2M and 0.47M, whereas the thermal pulses on the AGB are readily recognized at higher core masses of 0.5M. The lime-green curve is the analytic expression given by equation (8). The vertical lines for each star mark the point where the envelope has been exhausted by the AGB wind.

Extended Data Fig. 9 The minimum value of the efficiency parameter αλCE required for WD 1856 b to form via common-envelope evolution as a function of the progenitor stellar mass.

The two dashed curves show the minimum αλCE values from our analytic calculation (equation (11)) required for a 15MJ object to eject the primary star’s envelope. The purple dashed curve is taken directly from equation (11), and the brown dashed curve results if the progenitor star has lost 0.1M in a stellar wind by the time of the common envelope. The three solid curves show the minimum αλCE computed directly from MIST tracks in three different situations: before the star reaches the AGB (red), before more than 30% of the star’s envelope mass has been lost (black), and at any point in the star’s evolution, regardless of the mass lost (blue). Stars in the grey region at low masses evolve too slowly for the system to have left the main sequence more than 5.85 Gyr ago and are not viable solutions. For values of αλCE > 1 (horizontal grey line), one must invoke the internal energy of the star to help to unbind the envelope during the common-envelope phase. Before mass is lost during the AGB phase, it is difficult for WD 1856 b to eject the common envelope, but it is possible that WD 1856 b could have ejected its progenitor’s envelope if the common-envelope phase began after the progenitor reached the AGB. We have smoothed the lower two curves to remove some unphysical scatter that is probably due to numerical artefacts in the model grids.

Extended Data Table 1 Comparison of white dwarf parameters from different atmosphere models

Supplementary information

Supplementary Data

This file contains a comma separated value file with spectroscopic data on the M-dwarf companions.

.Peer Review File

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vanderburg, A., Rappaport, S.A., Xu, S. et al. A giant planet candidate transiting a white dwarf. Nature 585, 363–367 (2020). https://doi.org/10.1038/s41586-020-2713-y

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing